The linear constraint of secret key rate capacity is overcome by the tiwn-field quantum key distribution (QKD). However, the complex phase-locking and phase-tracking technique requirements throttle the real-life applications of twin-field protocol. The asynchronous measurement-device-independent (AMDI) QKD or called mode-pairing QKD protocol can relax the technical requirements and keep the similar performance of twin-field protocol. Here, we propose an AMDI-QKD protocol with a nonclassical light source by changing the phase-randomized weak coherent state to a phase-randomized coherent-state superposition in the signal state time window. Simulation results show that our proposed hybrid source protocol significantly enhances the key rate of the AMDI-QKD protocol, while exhibiting robustness to imperfect modulation of nonclassical light sources.
The phenomenon of seat occupancy in university libraries is a prevalent issue. However, existing solutions, such as software-based seat reservations and sensors-based occupancy detection, have proven to be inadequate in effectively addressing this problem. In this study, we propose a novel approach: a serial dual-channel object detection model based on Faster RCNN. This model is designed to discern all instances of occupied seats within the library and continuously update real-time information regarding seat occupancy status. To train the neural network, a distinctive dataset is utilized, which blends virtual images generated using Unreal Engine 5 (UE5) with real-world images. Notably, our test results underscore the remarkable performance uplift attained through the application of self-generated virtual datasets in training Convolutional Neural Networks (CNNs), particularly within specialized scenarios. Furthermore, this study introduces a pioneering detection model that seamlessly amalgamates the Faster R-CNN-based object detection framework with a transfer learning-based object classification algorithm. This amalgamation not only significantly curtails the computational resources and time investments needed for neural network training but also considerably heightens the efficiency of single-frame detection rates. Additionally, a user-friendly web interface and a mobile application have been meticulously developed, constituting a computer vision-driven platform for detecting seat occupancy within library premises. Noteworthy is the substantial enhancement in seat occupancy recognition accuracy, coupled with a reduction in computational resources required for neural network training, collectively contributing to a considerable amplification in the overall efficiency of library seat management.
The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.
Deep neural operators (DNOs) have been utilized to approximate nonlinear mappings between function spaces. However, DNOs face the challenge of increased dimensionality and computational cost associated with unaligned observation data. In this study, we propose a hybrid Decoder-DeepONet operator regression framework to handle unaligned data effectively. Additionally, we introduce a Multi-Decoder-DeepONet, which utilizes an average field of training data as input augmentation. The consistencies of the frameworks with the operator approximation theory are provided, on the basis of the universal approximation theorem. Two numerical experiments, Darcy problem and flow-field around an airfoil, are conducted to validate the efficiency and accuracy of the proposed methods. Results illustrate the advantages of Decoder-DeepONet and Multi-Decoder-DeepONet in handling unaligned observation data and showcase their potentials in improving prediction accuracy.
TraitLab is a software package for simulating, fitting and analysing tree-like binary data under a stochastic Dollo model of evolution. The model also allows for rate heterogeneity through catastrophes, evolutionary events where many traits are simultaneously lost while new ones arise, and borrowing, whereby traits transfer laterally between species as well as through ancestral relationships. The core of the package is a Markov chain Monte Carlo (MCMC) sampling algorithm that enables the user to sample from the Bayesian joint posterior distribution for tree topologies, clade and root ages, and the trait loss, catastrophe and borrowing rates for a given data set. Data can be simulated according to the fitted Dollo model or according to a number of generalized models that allow for heterogeneity in the trait loss rate, biases in the data collection process and borrowing of traits between lineages. Coupled pairs of Markov chains can be used to diagnose MCMC mixing and convergence and to debias MCMC estimators. The raw data, MCMC run output, and model fit can be inspected using a number of useful graphical and analytical tools provided within the package or imported into other popular analysis programs. TraitLab is freely available and runs within the Matlab computing environment with its Statistics and Machine Learning toolbox, no other additional toolboxes are required.
A primary challenge of physics-informed machine learning (PIML) is its generalization beyond the training domain, especially when dealing with complex physical problems represented by partial differential equations (PDEs). This paper aims to enhance the generalization capabilities of PIML, facilitating practical, real-world applications where accurate predictions in unexplored regions are crucial. We leverage the inherent causality and temporal sequential characteristics of PDE solutions to fuse PIML models with recurrent neural architectures based on systems of ordinary differential equations, referred to as neural oscillators. Through effectively capturing long-time dependencies and mitigating the exploding and vanishing gradient problem, neural oscillators foster improved generalization in PIML tasks. Extensive experimentation involving time-dependent nonlinear PDEs and biharmonic beam equations demonstrates the efficacy of the proposed approach. Incorporating neural oscillators outperforms existing state-of-the-art methods on benchmark problems across various metrics. Consequently, the proposed method improves the generalization capabilities of PIML, providing accurate solutions for extrapolation and prediction beyond the training data.
A population-averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.
We propose an end-to-end Automatic Speech Recognition (ASR) system that can be trained on transcribed speech data, text-only data, or a mixture of both. The proposed model uses an integrated auxiliary block for text-based training. This block combines a non-autoregressive multi-speaker text-to-mel-spectrogram generator with a GAN-based enhancer to improve the spectrogram quality. The proposed system can generate a mel-spectrogram dynamically during training. It can be used to adapt the ASR model to a new domain by using text-only data from this domain. We demonstrate that the proposed training method significantly improves ASR accuracy compared to the system trained on transcribed speech only. It also surpasses cascade TTS systems with the vocoder in the adaptation quality and training speed.
Discrete latent space models have recently achieved performance on par with their continuous counterparts in deep variational inference. While they still face various implementation challenges, these models offer the opportunity for a better interpretation of latent spaces, as well as a more direct representation of naturally discrete phenomena. Most recent approaches propose to train separately very high-dimensional prior models on the discrete latent data which is a challenging task on its own. In this paper, we introduce a latent data model where the discrete state is a Markov chain, which allows fast end-to-end training. The performance of our generative model is assessed on a building management dataset and on the publicly available Electricity Transformer Dataset.
This research aims to develop kernel GNG, a kernelized version of the growing neural gas (GNG) algorithm, and to investigate the features of the networks generated by the kernel GNG. The GNG is an unsupervised artificial neural network that can transform a dataset into an undirected graph, thereby extracting the features of the dataset as a graph. The GNG is widely used in vector quantization, clustering, and 3D graphics. Kernel methods are often used to map a dataset to feature space, with support vector machines being the most prominent application. This paper introduces the kernel GNG approach and explores the characteristics of the networks generated by kernel GNG. Five kernels, including Gaussian, Laplacian, Cauchy, inverse multiquadric, and log kernels, are used in this study.
Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.