Human knowledge is made up of the conceptual structures of many communities of interest. In order to establish coherence in human knowledge representation, it is important to enable communication between the conceptual structures of different communities The conceptual structures of any particular community is representable in an ontology. Such a ontology provides a formal linguistic standard for that community. However, a standard community ontology is established for various purposes, and makes choices that force a given interpretation, while excluding others that may be equally valid for other purposes. Hence, a given representation is relative to the purpose for that representation. Due to this relativity of representation, in the larger scope of all human knowledge it is more important to standardize methods and frameworks for relating ontologies than to standardize any particular choice of ontology. The standardization of methods and frameworks is called the semantic integration of ontologies.
Model editing aims to precisely alter the behaviors of large language models (LLMs) in relation to specific knowledge, while leaving unrelated knowledge intact. This approach has proven effective in addressing issues of hallucination and outdated information in LLMs. However, the potential of using model editing to modify knowledge in the medical field remains largely unexplored, even though resolving hallucination is a pressing need in this area. Our observations indicate that current methods face significant challenges in dealing with specialized and complex knowledge in medical domain. Therefore, we propose MedLaSA, a novel Layer-wise Scalable Adapter strategy for medical model editing. MedLaSA harnesses the strengths of both adding extra parameters and locate-then-edit methods for medical model editing. We utilize causal tracing to identify the association of knowledge in neurons across different layers, and generate a corresponding scale set from the association value for each piece of knowledge. Subsequently, we incorporate scalable adapters into the dense layers of LLMs. These adapters are assigned scaling values based on the corresponding specific knowledge, which allows for the adjustment of the adapter's weight and rank. The more similar the content, the more consistent the scale between them. This ensures precise editing of semantically identical knowledge while avoiding impact on unrelated knowledge. To evaluate the editing impact on the behaviours of LLMs, we propose two model editing studies for medical domain: (1) editing factual knowledge for medical specialization and (2) editing the explanatory ability for complex knowledge. We build two novel medical benchmarking datasets and introduce a series of challenging and comprehensive metrics. Extensive experiments on medical LLMs demonstrate the editing efficiency of MedLaSA, without affecting unrelated knowledge.
Recent conversations in the algorithmic fairness literature have raised several concerns with standard conceptions of fairness. First, constraining predictive algorithms to satisfy fairness benchmarks may lead to non-optimal outcomes for disadvantaged groups. Second, technical interventions are often ineffective by themselves, especially when divorced from an understanding of structural processes that generate social inequality. Inspired by both these critiques, we construct a common decision-making model, using mortgage loans as a running example. We show that under some conditions, any choice of decision threshold will inevitably perpetuate existing disparities in financial stability unless one deviates from the Pareto optimal policy. Then, we model the effects of three different types of interventions. We show how different interventions are recommended depending upon the difficulty of enacting structural change upon external parameters and depending upon the policymaker's preferences for equity or efficiency. Counterintuitively, we demonstrate that preferences for efficiency over equity may lead to recommendations for interventions that target the under-resourced group. Finally, we simulate the effects of interventions on a dataset that combines HMDA and Fannie Mae loan data. This research highlights the ways that structural inequality can be perpetuated by seemingly unbiased decision mechanisms, and it shows that in many situations, technical solutions must be paired with external, context-aware interventions to enact social change.
An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that within the limits of this framework, for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates an undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback make the LLM prone to being prompted into the undesired behaviors. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick the LLM into breaking its alignment guardrails by triggering it into acting as a malicious persona. Our results expose fundamental limitations in alignment of LLMs and bring to the forefront the need to devise reliable mechanisms for ensuring AI safety.
Mixed linear regression is a well-studied problem in parametric statistics and machine learning. Given a set of samples, tuples of covariates and labels, the task of mixed linear regression is to find a small list of linear relationships that best fit the samples. Usually it is assumed that the label is generated stochastically by randomly selecting one of two or more linear functions, applying this chosen function to the covariates, and potentially introducing noise to the result. In that situation, the objective is to estimate the ground-truth linear functions up to some parameter error. The popular expectation maximization (EM) and alternating minimization (AM) algorithms have been previously analyzed for this. In this paper, we consider the more general problem of agnostic learning of mixed linear regression from samples, without such generative models. In particular, we show that the AM and EM algorithms, under standard conditions of separability and good initialization, lead to agnostic learning in mixed linear regression by converging to the population loss minimizers, for suitably defined loss functions. In some sense, this shows the strength of AM and EM algorithms that converges to ``optimal solutions'' even in the absence of realizable generative models.
The advancement of large language models (LLMs) has propelled the development of dialogue systems. Unlike the popular ChatGPT-like assistant model, which only satisfies the user's preferences, task-oriented dialogue systems have also faced new requirements and challenges in the broader business field. They are expected to provide correct responses at each dialogue turn, at the same time, achieve the overall goal defined by the task. By understanding rhetorical structures and topic structures via topic segmentation and discourse parsing, a dialogue system may do a better planning to achieve both objectives. However, while both structures belong to discourse structure in linguistics, rhetorical structure and topic structure are mostly modeled separately or with one assisting the other in the prior work. The interaction between these two structures has not been considered for joint modeling and mutual learning. Furthermore, unsupervised learning techniques to achieve the above are not well explored. To fill this gap, we propose an unsupervised mutual learning framework of two structures leveraging the global and local connections between them. We extend the topic modeling between non-adjacent discourse units to ensure global structural relevance with rhetorical structures. We also incorporate rhetorical structures into the topic structure through a graph neural network model to ensure local coherence consistency. Finally, we utilize the similarity between the two fused structures for mutual learning. The experimental results demonstrate that our methods outperform all strong baselines on two dialogue rhetorical datasets (STAC and Molweni), as well as dialogue topic datasets (Doc2Dial and TIAGE). We provide our code at //github.com/Jeff-Sue/URT.
Connected and automated vehicles are poised to transform the transport system. However, significant uncertainties remain about their impact, particularly regarding concerns that this advanced technology might exacerbate injustices, such as safety disparities for vulnerable road users. Therefore, understanding the potential conflicts of this technology with societal values such as justice and safety is crucial for responsible implementation. To date, no research has focused on what safety and justice in transport mean in the context of CAV deployment and how the potential benefits of CAVs can be harnessed without exacerbating the existing vulnerabilities and injustices VRUs face. This paper addresses this gap by exploring car drivers' and pedestrians' perceptions of safety and justice issues that CAVs might exacerbate using an existing theoretical framework. Employing a qualitative approach, the study delves into the nuanced aspects of these concepts. Interviews were conducted with 30 participants aged between 18 and 79 in Queensland, Australia. These interviews were recorded, transcribed, organised, and analysed using reflexive thematic analysis. Three main themes emerged from the participants' discussions: CAVs as a safety problem for VRUs, CAVs as a justice problem for VRUs, and CAVs as an alignment with societal values problem. Participants emphasised the safety challenges CAVs pose for VRUs, highlighting the need for thorough evaluation and regulatory oversight. Concerns were also raised about CAVs potentially marginalising vulnerable groups within society. Participants advocated for inclusive discussions and a justice-oriented approach to designing a comprehensive transport system to address these concerns.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.