亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper considers an active reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) system. We aim to maximize radar signal-to-interference-plus-noise-ratio (SINR) by jointly optimizing the beamforming matrix at the dual-function radar-communication (DFRC) base station (BS) and the reflecting coefficients at the active RIS subject to the quality of service (QoS) constraints of communication users (UE) and the transmit power constraints of active RIS and DFRC BS. To tackle the optimization problem, the majorization-minimization (MM) algorithm is applied to address the nonconvex radar SINR objective function, and the resulting quartic problem is solved by developing an semidefinite relaxation (SDR)-based approach. Moreover, we derive the scaling order of the radar SINR with a large number of reflecting elements. Next, the transmit power allocation problem and the deployment strategy of the active RIS are studied with a moderate number of reflecting elements. Finally, we validate the potential of the active RIS in ISAC systems compared to passive RIS. Additionally, we deliberate on several open problems that remain for future research.

相關內容

This paper proposes an adaptive behavioral decision-making method for autonomous vehicles (AVs) focusing on complex merging scenarios. Leveraging principles from non-cooperative game theory, we develop a vehicle interaction behavior model that defines key traffic elements and integrates a multifactorial reward function. Maximum entropy inverse reinforcement learning (IRL) is employed for behavior model parameter optimization. Optimal matching parameters can be obtained using the interaction behavior feature vector and the behavior probabilities output by the vehicle interaction model. Further, a behavioral decision-making method adapted to dynamic environments is proposed. By establishing a mapping model between multiple environmental variables and model parameters, it enables parameters online learning and recognition, and achieves to output interactive behavior probabilities of AVs. Quantitative analysis employing naturalistic driving datasets (highD and exiD) and real-vehicle test data validates the model's high consistency with human decision-making. In 188 tested interaction scenarios, the average human-like similarity rate is 81.73%, with a notable 83.12% in the highD dataset. Furthermore, in 145 dynamic interactions, the method matches human decisions at 77.12%, with 6913 consistence instances. Moreover, in real-vehicle tests, a 72.73% similarity with 0% safety violations are obtained. Results demonstrate the effectiveness of our proposed method in enabling AVs to make informed adaptive behavior decisions in interactive environments.

This paper introduces an innovative deep joint source-channel coding (DeepJSCC) approach to image transmission over a cooperative relay channel. The relay either amplifies and forwards a scaled version of its received signal, referred to as DeepJSCC-AF, or leverages neural networks to extract relevant features about the source signal before forwarding it to the destination, which we call DeepJSCC-PF (Process-and-Forward). In the full-duplex scheme, inspired by the block Markov coding (BMC) concept, we introduce a novel block transmission strategy built upon novel vision transformer architecture. In the proposed scheme, the source transmits information in blocks, and the relay updates its knowledge about the input signal after each block and generates its own signal to be conveyed to the destination. To enhance practicality, we introduce an adaptive transmission model, which allows a single trained DeepJSCC model to adapt seamlessly to various channel qualities, making it a versatile solution. Simulation results demonstrate the superior performance of our proposed DeepJSCC compared to the state-of-the-art BPG image compression algorithm, even when operating at the maximum achievable rate of conventional decode-and-forward and compress-and-forward protocols, for both half-duplex and full-duplex relay scenarios.

The paper introduces a Signed Generalized Random Dot Product Graph (SGRDPG) model, which is a variant of the Generalized Random Dot Product Graph (GRDPG), where, in addition, edges can be positive or negative. The setting is extended to a multiplex version, where all layers have the same collection of nodes and follow the SGRDPG. The only common feature of the layers of the network is that they can be partitioned into groups with common subspace structures, while otherwise matrices of connection probabilities can be all different. The setting above is extremely flexible and includes a variety of existing multiplex network models as its particular cases. The paper fulfills two objectives. First, it shows that keeping signs of the edges in the process of network construction leads to a better precision of estimation and clustering and, hence, is beneficial for tackling real world problems such as, for example, analysis of brain networks. Second, by employing novel algorithms, our paper ensures strongly consistent clustering of layers and high accuracy of subspace estimation. In addition to theoretical guarantees, both of those features are demonstrated using numerical simulations and a real data example.

This paper presents an ecosystem for personal knowledge graphs (PKGs), commonly defined as resources of structured information about entities related to an individual, their attributes, and the relations between them. PKGs are a key enabler of secure and sophisticated personal data management and personalized services. However, there are challenges that need to be addressed before PKGs can achieve widespread adoption. One of the fundamental challenges is the very definition of what constitutes a PKG, as there are multiple interpretations of the term. We propose our own definition of a PKG, emphasizing the aspects of (1) data ownership by a single individual and (2) the delivery of personalized services as the primary purpose. We further argue that a holistic view of PKGs is needed to unlock their full potential, and propose a unified framework for PKGs, where the PKG is a part of a larger ecosystem with clear interfaces towards data services and data sources. A comprehensive survey and synthesis of existing work is conducted, with a mapping of the surveyed work into the proposed unified ecosystem. Finally, we identify open challenges and research opportunities for the ecosystem as a whole, as well as for the specific aspects of PKGs, which include population, representation and management, and utilization.

This paper studies the fair transmission design for an intelligent reflecting surface (IRS) aided rate-splitting multiple access (RSMA). IRS is used to establish a good signal propagation environment and enhance the RSMA transmission performance. The fair rate adaption problem is constructed as a max-min optimization problem. To solve the optimization problem, we adopt an alternative optimization (AO) algorithm to optimize the power allocation, beamforming, and decoding order, respectively. A generalized power iteration (GPI) method is proposed to optimize the receive beamforming, which can improve the minimum rate of devices and reduce the optimization complexity. At the base station (BS), a successive group decoding (SGD) algorithm is proposed to tackle the uplink signal estimation, which trades off the fairness and complexity of decoding. At the same time, we also consider robust communication with imperfect channel state information at the transmitter (CSIT), which studies robust optimization by using lower bound expressions on the expected data rates. Extensive numerical results show that the proposed optimization algorithm can significantly improve the performance of fairness. It also provides reliable results for uplink communication with imperfect CSIT.

This paper investigates a reconfigurable intelligent surface (RIS)-aided wideband massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with low-resolution analog-to-digital converters (ADCs). Frequency-selective Rician fading channels are considered, and the OFDM data transmission process is presented in time domain. This paper derives the closed-form approximate expression of the uplink achievable rate, based on which the asymptotic system performance is analyzed when the number of the antennas at the base station and the number of reflecting elements at the RIS grow to infinity. Besides, the power scaling laws of the considered system are revealed to provide energy-saving insights. Furthermore, this paper proposes a gradient ascent-based algorithm to design the phase shifts of the RIS for maximizing the minimum user rate. Finally, numerical results are presented to verify the correctness of analytical conclusions and draw insights.

This paper investigates a novel hybrid worker recruitment problem where the mobile crowd sensing and computing (MCSC) platform employs workers to serve MCSC tasks with diverse quality requirements and budget constraints, under uncertainties in workers' participation and their local workloads.We propose a hybrid worker recruitment framework consisting of offline and online trading modes. The former enables the platform to overbook long-term workers (services) to cope with dynamic service supply via signing contracts in advance, which is formulated as 0-1 integer linear programming (ILP) with probabilistic constraints of service quality and budget.Besides, motivated by the existing uncertainties which may render long-term workers fail to meet the service quality requirement of each task, we augment our methodology with an online temporary worker recruitment scheme as a backup Plan B to support seamless service provisioning for MCSC tasks, which also represents a 0-1 ILP problem. To tackle these problems which are proved to be NP-hard, we develop three algorithms, namely, i) exhaustive searching, ii) unique index-based stochastic searching with risk-aware filter constraint, iii) geometric programming-based successive convex algorithm, which achieve the optimal or sub-optimal solutions. Experimental results demonstrate our effectiveness in terms of service quality, time efficiency, etc.

This paper explores the utilization of LLMs for data preprocessing (DP), a crucial step in the data mining pipeline that transforms raw data into a clean format conducive to easy processing. Whereas the use of LLMs has sparked interest in devising universal solutions to DP, recent initiatives in this domain typically rely on GPT APIs, raising inevitable data breach concerns. Unlike these approaches, we consider instruction-tuning local LLMs (7 - 13B models) as universal DP ask solver. We select a collection of datasets across four representative DP tasks and construct instruction-tuning data using serialization and knowledge injection techniques tailored to DP. As such, the instruction-tuned LLMs empower users to manually craft instructions for DP. Meanwhile, they can operate on a local, single, and low-priced GPU, ensuring data security and enabling further tuning. Our experiments show that our dataset constructed for DP instruction tuning, namely Jellyfish, effectively enhances LLMs' DP performances and barely compromises their abilities in NLP tasks. By tuning Mistral-7B and OpenOrca-Platypus2-13B with Jellyfish, the models deliver competitiveness compared to state-of-the-art DP methods and strong generalizability to unseen tasks. The models' performance rivals that of GPT series models, and the interpretation offers enhanced reasoning capabilities compared to GPT-3.5. The 7B and 13B Jellyfish models are available at Hugging Face: //huggingface.co/NECOUDBFM/Jellyfish-7B //huggingface.co/NECOUDBFM/Jellyfish-13B

This paper introduces several enhancements to the minimum covariance determinant method of outlier detection and robust estimation of means and covariances. We leverage the principal component transform to achieve dimension reduction and ultimately better analyses. Our best subset selection algorithm strategically combines statistical depth and concentration steps. To ascertain the appropriate subset size and number of principal components, we introduce a bootstrap procedure that estimates the instability of the best subset algorithm. The parameter combination exhibiting minimal instability proves ideal for the purposes of outlier detection and robust estimation. Rigorous benchmarking against prominent MCD variants showcases our approach's superior statistical performance and computational speed in high dimensions. Application to a fruit spectra data set and a cancer genomics data set illustrates our claims.

The paper focuses on real-time facial expression recognition (FER) systems as an important component in various real-world applications such as social robotics. We investigate two hardware options for the deployment of FER machine learning (ML) models at the edge: neuromorphic hardware versus edge AI accelerators. Our study includes exhaustive experiments providing comparative analyses between the Intel Loihi neuromorphic processor and four distinct edge platforms: Raspberry Pi-4, Intel Neural Compute Stick (NSC), Jetson Nano, and Coral TPU. The results obtained show that Loihi can achieve approximately two orders of magnitude reduction in power dissipation and one order of magnitude energy savings compared to Coral TPU which happens to be the least power-intensive and energy-consuming edge AI accelerator. These reductions in power and energy are achieved while the neuromorphic solution maintains a comparable level of accuracy with the edge accelerators, all within the real-time latency requirements.

北京阿比特科技有限公司