Combining extreme value theory with Bayesian methods offers several advantages, such as a quantification of uncertainty on parameter estimation or the ability to study irregular models that cannot be handled by frequentist statistics. However, it comes with many options that are left to the user concerning model building, computational algorithms, and even inference itself. Among them, the parameterization of the model induces a geometry that can alter the efficiency of computational algorithms, in addition to making calculations involved. We focus on the Poisson process characterization of extremes and outline two key benefits of an orthogonal parameterization addressing both issues. First, several diagnostics show that Markov chain Monte Carlo convergence is improved compared with the original parameterization. Second, orthogonalization also helps deriving Jeffreys and penalized complexity priors, and establishing posterior propriety. The analysis is supported by simulations, and our framework is then applied to extreme level estimation on river flow data.
Defect prediction is crucial for software quality assurance and has been extensively researched over recent decades. However, prior studies rarely focus on data complexity in defect prediction tasks, and even less on understanding the difficulties of these tasks from the perspective of data complexity. In this paper, we conduct an empirical study to estimate the hardness of over 33,000 instances, employing a set of measures to characterize the inherent difficulty of instances and the characteristics of defect datasets. Our findings indicate that: (1) instance hardness in both classes displays a right-skewed distribution, with the defective class exhibiting a more scattered distribution; (2) class overlap is the primary factor influencing instance hardness and can be characterized through feature, structural, instance, and multiresolution overlap; (3) no universal preprocessing technique is applicable to all datasets, and it may not consistently reduce data complexity, fortunately, dataset complexity measures can help identify suitable techniques for specific datasets; (4) integrating data complexity information into the learning process can enhance an algorithm's learning capacity. In summary, this empirical study highlights the crucial role of data complexity in defect prediction tasks, and provides a novel perspective for advancing research in defect prediction techniques.
Advanced science and technology provide a wealth of big data from different sources for extreme value analysis.Classic extreme value theory was extended to obtain an accelerated max-stable distribution family for modelling competing risk-based extreme data in Cao and Zhang (2021). In this paper, we establish probability models for power normalized maxima and minima from competing risks. The limit distributions consist of an extensional new accelerated max-stable and min-stable distribution family (termed as the accelerated p-max/p-min stable distribution), and its left-truncated version. The limit types of distributions are determined principally by the sample generating process and the interplay among the competing risks, which are illustrated by common examples. Further, the statistical inference concerning the maximum likelihood estimation and model diagnosis of this model was investigated. Numerical studies show first the efficient approximation of all limit scenarios as well as its comparable convergence rate in contrast with those under linear normalization, and then present the maximum likelihood estimation and diagnosis of accelerated p-max/p-min stable models for simulated data sets. Finally, two real datasets concerning annual maximum of ground level ozone and survival times of Stanford heart plant demonstrate the performance of our accelerated p-max and accelerated p-min stable models.
We study the connections between sorting and the binary search tree (BST) model, with an aim towards showing that the fields are connected more deeply than is currently appreciated. While any BST can be used to sort by inserting the keys one-by-one, this is a very limited relationship and importantly says nothing about parallel sorting. We show what we believe to be the first formal relationship between the BST model and sorting. Namely, we show that a large class of sorting algorithms, which includes mergesort, quicksort, insertion sort, and almost every instance-optimal sorting algorithm, are equivalent in cost to offline BST algorithms. Our main theoretical tool is the geometric interpretation of the BST model introduced by Demaine et al., which finds an equivalence between searches on a BST and point sets in the plane satisfying a certain property. To give an example of the utility of our approach, we introduce the log-interleave bound, a measure of the information-theoretic complexity of a permutation $\pi$, which is within a $\lg \lg n$ multiplicative factor of a known lower bound in the BST model; we also devise a parallel sorting algorithm with polylogarithmic span that sorts a permutation $\pi$ using comparisons proportional to its log-interleave bound. Our aforementioned result on sorting and offline BST algorithms can be used to show existence of an offline BST algorithm whose cost is within a constant factor of the log-interleave bound of any permutation $\pi$.
Grade of Membership (GoM) models are popular individual-level mixture models for multivariate categorical data. GoM allows each subject to have mixed memberships in multiple extreme latent profiles. Therefore GoM models have a richer modeling capacity than latent class models that restrict each subject to belong to a single profile. The flexibility of GoM comes at the cost of more challenging identifiability and estimation problems. In this work, we propose a singular value decomposition (SVD) based spectral approach to GoM analysis with multivariate binary responses. Our approach hinges on the observation that the expectation of the data matrix has a low-rank decomposition under a GoM model. For identifiability, we develop sufficient and almost necessary conditions for a notion of expectation identifiability. For estimation, we extract only a few leading singular vectors of the observed data matrix, and exploit the simplex geometry of these vectors to estimate the mixed membership scores and other parameters. Our spectral method has a huge computational advantage over Bayesian or likelihood-based methods and is scalable to large-scale and high-dimensional data. Extensive simulation studies demonstrate the superior efficiency and accuracy of our method. We also illustrate our method by applying it to a personality test dataset.
Since its inception in Erikki Oja's seminal paper in 1982, Oja's algorithm has become an established method for streaming principle component analysis (PCA). We study the problem of streaming PCA, where the data-points are sampled from an irreducible, aperiodic, and reversible Markov chain. Our goal is to estimate the top eigenvector of the unknown covariance matrix of the stationary distribution. This setting has implications in situations where data can only be sampled from a Markov Chain Monte Carlo (MCMC) type algorithm, and the goal is to do inference for parameters of the stationary distribution of this chain. Most convergence guarantees for Oja's algorithm in the literature assume that the data-points are sampled IID. For data streams with Markovian dependence, one typically downsamples the data to get a "nearly" independent data stream. In this paper, we obtain the first sharp rate for Oja's algorithm on the entire data, where we remove the logarithmic dependence on $n$ resulting from throwing data away in downsampling strategies.
This paper introduces a new method that embeds any Bayesian model used to generate synthetic data and converts it into a differentially private (DP) mechanism. We propose an alteration of the model synthesizer to utilize a censored likelihood that induces upper and lower bounds of [$\exp(-\epsilon / 2), \exp(\epsilon / 2)$], where $\epsilon$ denotes the level of the DP guarantee. This censoring mechanism equipped with an $\epsilon-$DP guarantee will induce distortion into the joint parameter posterior distribution by flattening or shifting the distribution towards a weakly informative prior. To minimize the distortion in the posterior distribution induced by likelihood censoring, we embed a vector-weighted pseudo posterior mechanism within the censoring mechanism. The pseudo posterior is formulated by selectively downweighting each likelihood contribution proportionally to its disclosure risk. On its own, the pseudo posterior mechanism produces a weaker asymptotic differential privacy (aDP) guarantee. After embedding in the censoring mechanism, the DP guarantee becomes strict such that it does not rely on asymptotics. We demonstrate that the pseudo posterior mechanism creates synthetic data with the highest utility at the price of a weaker, aDP guarantee, while embedding the pseudo posterior mechanism in the proposed censoring mechanism produces synthetic data with a stronger, non-asymptotic DP guarantee at the cost of slightly reduced utility. The perturbed histogram mechanism is included for comparison.
The Differentiable Search Index (DSI) is a novel information retrieval (IR) framework that utilizes a differentiable function to generate a sorted list of document identifiers in response to a given query. However, due to the black-box nature of the end-to-end neural architecture, it remains to be understood to what extent DSI possesses the basic indexing and retrieval abilities. To mitigate this gap, in this study, we define and examine three important abilities that a functioning IR framework should possess, namely, exclusivity, completeness, and relevance ordering. Our analytical experimentation shows that while DSI demonstrates proficiency in memorizing the unidirectional mapping from pseudo queries to document identifiers, it falls short in distinguishing relevant documents from random ones, thereby negatively impacting its retrieval effectiveness. To address this issue, we propose a multi-task distillation approach to enhance the retrieval quality without altering the structure of the model and successfully endow it with improved indexing abilities. Through experiments conducted on various datasets, we demonstrate that our proposed method outperforms previous DSI baselines.
Empirical likelihood enables a nonparametric, likelihood-driven style of inference without restrictive assumptions routinely made in parametric models. We develop a framework for applying empirical likelihood to the analysis of experimental designs, addressing issues that arise from blocking and multiple hypothesis testing. In addition to popular designs such as balanced incomplete block designs, our approach allows for highly unbalanced, incomplete block designs. We derive an asymptotic multivariate chi-square distribution for a set of empirical likelihood test statistics and propose two single-step multiple testing procedures: asymptotic Monte Carlo and nonparametric bootstrap. Both procedures asymptotically control the generalised family-wise error rate and efficiently construct simultaneous confidence intervals for comparisons of interest without explicitly considering the underlying covariance structure. A simulation study demonstrates that the performance of the procedures is robust to violations of standard assumptions of linear mixed models. We also present an application to experiments on a pesticide.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
A core capability of intelligent systems is the ability to quickly learn new tasks by drawing on prior experience. Gradient (or optimization) based meta-learning has recently emerged as an effective approach for few-shot learning. In this formulation, meta-parameters are learned in the outer loop, while task-specific models are learned in the inner-loop, by using only a small amount of data from the current task. A key challenge in scaling these approaches is the need to differentiate through the inner loop learning process, which can impose considerable computational and memory burdens. By drawing upon implicit differentiation, we develop the implicit MAML algorithm, which depends only on the solution to the inner level optimization and not the path taken by the inner loop optimizer. This effectively decouples the meta-gradient computation from the choice of inner loop optimizer. As a result, our approach is agnostic to the choice of inner loop optimizer and can gracefully handle many gradient steps without vanishing gradients or memory constraints. Theoretically, we prove that implicit MAML can compute accurate meta-gradients with a memory footprint that is, up to small constant factors, no more than that which is required to compute a single inner loop gradient and at no overall increase in the total computational cost. Experimentally, we show that these benefits of implicit MAML translate into empirical gains on few-shot image recognition benchmarks.