亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The growing complexity and capacity demands for mobile networks necessitate innovative techniques for optimizing resource usage. Meanwhile, recent breakthroughs have brought Reinforcement Learning (RL) into the domain of continuous control of real-world systems. As a step towards RL-based network control, this paper introduces a new framework for benchmarking the performance of an RL agent in network environments simulated with ns-3. Within this framework, we demonstrate that an RL agent without domain-specific knowledge can learn how to efficiently adjust Radio Access Network (RAN) parameters to match offline optimization in static scenarios, while also adapting on the fly in dynamic scenarios, in order to improve the overall user experience. Our proposed framework may serve as a foundation for further work in developing workflows for designing RL-based RAN control algorithms.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Federated learning (FL) is a promising technique for addressing the rising privacy and security issues. Its main ingredient is to cooperatively learn the model among the distributed clients without uploading any sensitive data. In this paper, we conducted a thorough review of the related works, following the development context and deeply mining the key technologies behind FL from both theoretical and practical perspectives. Specifically, we first classify the existing works in FL architecture based on the network topology of FL systems with detailed analysis and summarization. Next, we abstract the current application problems, summarize the general techniques and frame the application problems into the general paradigm of FL base models. Moreover, we provide our proposed solutions for model training via FL. We have summarized and analyzed the existing FedOpt algorithms, and deeply revealed the algorithmic development principles of many first-order algorithms in depth, proposing a more generalized algorithm design framework. Based on these frameworks, we have instantiated FedOpt algorithms. As privacy and security is the fundamental requirement in FL, we provide the existing attack scenarios and the defense methods. To the best of our knowledge, we are among the first tier to review the theoretical methodology and propose our strategies since there are very few works surveying the theoretical approaches. Our survey targets motivating the development of high-performance, privacy-preserving, and secure methods to integrate FL into real-world applications.

This paper presents a new method for solving an orienteering problem (OP) by breaking it down into two parts: a knapsack problem (KP) and a traveling salesman problem (TSP). A KP solver is responsible for picking nodes, while a TSP solver is responsible for designing the proper path and assisting the KP solver in judging constraint violations. To address constraints, we propose a dual-population coevolutionary algorithm (DPCA) as the KP solver, which simultaneously maintains both feasible and infeasible populations. A dynamic pointer network (DYPN) is introduced as the TSP solver, which takes city locations as inputs and immediately outputs a permutation of nodes. The model, which is trained by reinforcement learning, can capture both the structural and dynamic patterns of the given problem. The model can generalize to other instances with different scales and distributions. Experimental results show that the proposed algorithm can outperform conventional approaches in terms of training, inference, and generalization ability.

We propose a novel model-based offline Reinforcement Learning (RL) framework, called Adversarial Model for Offline Reinforcement Learning (ARMOR), which can robustly learn policies to improve upon an arbitrary reference policy regardless of data coverage. ARMOR is designed to optimize policies for the worst-case performance relative to the reference policy through adversarially training a Markov decision process model. In theory, we prove that ARMOR, with a well-tuned hyperparameter, can compete with the best policy within data coverage when the reference policy is supported by the data. At the same time, ARMOR is robust to hyperparameter choices: the policy learned by ARMOR, with "any" admissible hyperparameter, would never degrade the performance of the reference policy, even when the reference policy is not covered by the dataset. To validate these properties in practice, we design a scalable implementation of ARMOR, which by adversarial training, can optimize policies without using model ensembles in contrast to typical model-based methods. We show that ARMOR achieves competent performance with both state-of-the-art offline model-free and model-based RL algorithms and can robustly improve the reference policy over various hyperparameter choices.

Speaker diarization is a task to label an audio or video recording with the identity of the speaker at each given time stamp. In this work, we propose a novel machine learning framework to conduct real-time multi-speaker diarization and recognition without prior registration and pretraining in a fully online and reinforcement learning setting. Our framework combines embedding extraction, clustering, and resegmentation into the same problem as an online decision-making problem. We discuss practical considerations and advanced techniques such as the offline reinforcement learning, semi-supervision, and domain adaptation to address the challenges of limited training data and out-of-distribution environments. Our approach considers speaker diarization as a fully online learning problem of the speaker recognition task, where the agent receives no pretraining from any training set before deployment, and learns to detect speaker identity on the fly through reward feedbacks. The paradigm of the reinforcement learning approach to speaker diarization presents an adaptive, lightweight, and generalizable system that is useful for multi-user teleconferences, where many people might come and go without extensive pre-registration ahead of time. Lastly, we provide a desktop application that uses our proposed approach as a proof of concept. To the best of our knowledge, this is the first approach to apply a reinforcement learning approach to the speaker diarization task.

The past few years have seen rapid progress in combining reinforcement learning (RL) with deep learning. Various breakthroughs ranging from games to robotics have spurred the interest in designing sophisticated RL algorithms and systems. However, the prevailing workflow in RL is to learn tabula rasa, which may incur computational inefficiency. This precludes continuous deployment of RL algorithms and potentially excludes researchers without large-scale computing resources. In many other areas of machine learning, the pretraining paradigm has shown to be effective in acquiring transferable knowledge, which can be utilized for a variety of downstream tasks. Recently, we saw a surge of interest in Pretraining for Deep RL with promising results. However, much of the research has been based on different experimental settings. Due to the nature of RL, pretraining in this field is faced with unique challenges and hence requires new design principles. In this survey, we seek to systematically review existing works in pretraining for deep reinforcement learning, provide a taxonomy of these methods, discuss each sub-field, and bring attention to open problems and future directions.

Graph mining tasks arise from many different application domains, ranging from social networks, transportation, E-commerce, etc., which have been receiving great attention from the theoretical and algorithm design communities in recent years, and there has been some pioneering work using the hotly researched reinforcement learning (RL) techniques to address graph data mining tasks. However, these graph mining algorithms and RL models are dispersed in different research areas, which makes it hard to compare different algorithms with each other. In this survey, we provide a comprehensive overview of RL models and graph mining and generalize these algorithms to Graph Reinforcement Learning (GRL) as a unified formulation. We further discuss the applications of GRL methods across various domains and summarize the method description, open-source codes, and benchmark datasets of GRL methods. Finally, we propose possible important directions and challenges to be solved in the future. This is the latest work on a comprehensive survey of GRL literature, and this work provides a global view for researchers as well as a learning resource for researchers outside the domain. In addition, we create an online open-source for both interested researchers who want to enter this rapidly developing domain and experts who would like to compare GRL methods.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司