亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sequential recommender systems (SRS) could capture dynamic user preferences by modeling historical behaviors ordered in time. Despite effectiveness, focusing only on the \textit{collaborative signals} from behaviors does not fully grasp user interests. It is also significant to model the \textit{semantic relatedness} reflected in content features, e.g., images and text. Towards that end, in this paper, we aim to enhance the SRS tasks by effectively unifying collaborative signals and semantic relatedness together. Notably, we empirically point out that it is nontrivial to achieve such a goal due to semantic gap issues. Thus, we propose an end-to-end two-stream architecture for sequential recommendation, named TSSR, to learn user preferences from ID-based and content-based sequence. Specifically, we first present novel hierarchical contrasting module, including coarse user-grained and fine item-grained terms, to align the representations of inter-modality. Furthermore, we also design a two-stream architecture to learn the dependence of intra-modality sequence and the complex interactions of inter-modality sequence, which can yield more expressive capacity in understanding user interests. We conduct extensive experiments on five public datasets. The experimental results show that the TSSR could yield superior performance than competitive baselines. We also make our experimental codes publicly available at //anonymous.4open.science/r/TSSR-2A27/.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 泛化理論 · Extensibility · MoDELS · INFORMS ·
2024 年 4 月 22 日

Next Point-of-interest (POI) recommendation provides valuable suggestions for users to explore their surrounding environment. Existing studies rely on building recommendation models from large-scale users' check-in data, which is task-specific and needs extensive computational resources. Recently, the pretrained large language models (LLMs) have achieved significant advancements in various NLP tasks and have also been investigated for recommendation scenarios. However, the generalization abilities of LLMs still are unexplored to address the next POI recommendations, where users' geographical movement patterns should be extracted. Although there are studies that leverage LLMs for next-item recommendations, they fail to consider the geographical influence and sequential transitions. Hence, they cannot effectively solve the next POI recommendation task. To this end, we design novel prompting strategies and conduct empirical studies to assess the capability of LLMs, e.g., ChatGPT, for predicting a user's next check-in. Specifically, we consider several essential factors in human movement behaviors, including user geographical preference, spatial distance, and sequential transitions, and formulate the recommendation task as a ranking problem. Through extensive experiments on two widely used real-world datasets, we derive several key findings. Empirical evaluations demonstrate that LLMs have promising zero-shot recommendation abilities and can provide accurate and reasonable predictions. We also reveal that LLMs cannot accurately comprehend geographical context information and are sensitive to the order of presentation of candidate POIs, which shows the limitations of LLMs and necessitates further research on robust human mobility reasoning mechanisms.

Despite recent advances in large language models, building dependable and deployable NLP models typically requires abundant, high-quality training data. However, task-specific data is not available for many use cases, and manually curating task-specific data is labor-intensive. Recent work has studied prompt-driven synthetic data generation using large language models, but these generated datasets tend to lack complexity and diversity. To address these limitations, we introduce a method, \textit{DataTune}, to make better use of existing, publicly available datasets to improve automatic dataset generation. DataTune performs dataset transformation, enabling the repurposing of publicly available datasets into a format that is directly aligned with the specific requirements of target tasks. On a diverse set of language-based tasks from the BIG-Bench benchmark, we find that finetuning language models via DataTune improves over a few-shot prompting baseline by 49\% and improves over existing methods that use synthetic or retrieved training data by 34\%. We find that dataset transformation significantly increases the diversity and difficulty of generated data on many tasks. We integrate DataTune into an open-source repository to make this method accessible to the community: //github.com/neulab/prompt2model.

Sequential recommender systems (SRSs) aim to suggest next item for a user based on her historical interaction sequences. Recently, many research efforts have been devoted to attenuate the influence of noisy items in sequences by either assigning them with lower attention weights or discarding them directly. The major limitation of these methods is that the former would still prone to overfit noisy items while the latter may overlook informative items. To the end, in this paper, we propose a novel model named Multi-level Sequence Denoising with Cross-signal Contrastive Learning (MSDCCL) for sequential recommendation. To be specific, we first introduce a target-aware user interest extractor to simultaneously capture users' long and short term interest with the guidance of target items. Then, we develop a multi-level sequence denoising module to alleviate the impact of noisy items by employing both soft and hard signal denoising strategies. Additionally, we extend existing curriculum learning by simulating the learning pattern of human beings. It is worth noting that our proposed model can be seamlessly integrated with a majority of existing recommendation models and significantly boost their effectiveness. Experimental studies on five public datasets are conducted and the results demonstrate that the proposed MSDCCL is superior to the state-of-the-art baselines. The source code is publicly available at //github.com/lalunex/MSDCCL/tree/main.

Robot decision-making increasingly relies on expressive data-driven human prediction models when operating around people. While these models are known to suffer from prediction errors in out-of-distribution interactions, not all prediction errors equally impact downstream robot performance. We identify that the mathematical notion of regret precisely characterizes the degree to which incorrect predictions of future interaction outcomes degraded closed-loop robot performance. However, canonical regret measures can be poorly calibrated across diverse deployment interactions. We derive a calibrated regret metric that evaluates the quality of robot decisions in probability space rather than reward space. With this transformation, our metric removes the need for explicit reward functions to calculate the robot's regret, enables fairer comparison of interaction anomalies across disparate deployment contexts, and facilitates targeted dataset construction of "system-level" prediction failures. We experimentally quantify the value of this high-regret interaction data for aiding the robot in improving its downstream decision-making. In a suite of closed-loop autonomous driving simulations, we find that fine-tuning ego-conditioned behavior predictors exclusively on high-regret human-robot interaction data can improve the robot's overall re-deployment performance with significantly (77%) less data.

Numerous methods have been proposed for global navigation satellite system (GNSS) receivers to detect faulty GNSS signals. One such fault detection and exclusion (FDE) method is based on the mathematical concept of Euclidean distance matrices (EDMs). This paper outlines a greedy approach that uses an improved Euclidean distance matrix-based fault detection and exclusion algorithm. The novel greedy EDM FDE method implements a new fault detection test statistic and fault exclusion strategy that drastically simplifies the complexity of the algorithm over previous work. To validate the novel greedy EDM FDE algorithm, we created a simulated dataset using receiver locations from around the globe. The simulated dataset allows us to verify our results on 2,601 different satellite geometries. Additionally, we tested the greedy EDM FDE algorithm using a real-world dataset from seven different android phones. Across both the simulated and real-world datasets, the Python implementation of the greedy EDM FDE algorithm is shown to be computed an order of magnitude more rapidly than a comparable greedy residual FDE method while obtaining similar fault exclusion accuracy. We provide discussion on the comparative time complexities of greedy EDM FDE, greedy residual FDE, and solution separation. We also explain potential modifications to greedy residual FDE that can be added to alter performance characteristics.

The correct model response in the face of uncertainty is to abstain from answering a question so as not to mislead the user. In this work, we study the ability of LLMs to abstain from answering context-dependent science questions when provided insufficient or incorrect context. We probe model sensitivity in several settings: removing gold context, replacing gold context with irrelevant context, and providing additional context beyond what is given. In experiments on four QA datasets with four LLMs, we show that performance varies greatly across models, across the type of context provided, and also by question type; in particular, many LLMs seem unable to abstain from answering boolean questions using standard QA prompts. Our analysis also highlights the unexpected impact of abstention performance on QA task accuracy. Counter-intuitively, in some settings, replacing gold context with irrelevant context or adding irrelevant context to gold context can improve abstention performance in a way that results in improvements in task performance. Our results imply that changes are needed in QA dataset design and evaluation to more effectively assess the correctness and downstream impacts of model abstention.

We study a scenario in which multiple uncoordinated devices aim to achieve reliable transmissions within a given time frame. The devices are intermittently active and access a shared pool of channel resources in a grant-free manner by utilizing multiple transmissions (K-repetition coding). This allows them to achieve diversity and improve the reliability within a certain latency constraint. We focus on two access methods: one where devices choose K slots at random and another one where the access patterns are deterministic and follow a specific code design, namely the Steiner System. We analyze the problem under two signal models that involve different complexity for the receiver. First, collision model is considered, where only interference-free transmissions can be used and combined. Second, a model treating interference as noise is analyzed, where the receiver is capable of utilizing all K replicas, applying maximum ratio combining (MRC). For both signal models, we investigate receivers with and without successive interference cancellation (SIC). We develop approximations and bounds for the outage probabilities that very closely match simulation results. Overall, we show that deterministic access patterns have the potential to significantly outperform random selection in terms of reliability. Furthermore, deterministic access patterns offer a simplified system design.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司