Alternative data provides valuable insights for lenders to evaluate a borrower's creditworthiness, which could help expand credit access to underserved groups and lower costs for borrowers. But some forms of alternative data have historically been excluded from credit underwriting because it could act as an illegal proxy for a protected class like race or gender, causing redlining. We propose a method for applying causal inference to a supervised machine learning model to debias alternative data so that it might be used for credit underwriting. We demonstrate how our algorithm can be used against a public credit dataset to improve model accuracy across different racial groups, while providing theoretically robust nondiscrimination guarantees.
RGBT tracking usually suffers from various challenging factors of low resolution, similar appearance, extreme illumination, thermal crossover and occlusion, to name a few. Existing works often study complex fusion models to handle challenging scenarios, but can not well adapt to various challenges, which might limit tracking performance. To handle this problem, we propose a novel Dynamic Disentangled Fusion Network called DDFNet, which disentangles the fusion process into several dynamic fusion models via the challenge attributes to adapt to various challenging scenarios, for robust RGBT tracking. In particular, we design six attribute-based fusion models to integrate RGB and thermal features under the six challenging scenarios respectively.Since each fusion model is to deal with the corresponding challenges, such disentangled fusion scheme could increase the fusion capacity without the dependence on large-scale training data. Considering that every challenging scenario also has different levels of difficulty, we propose to optimize the combination of multiple fusion units to form each attribute-based fusion model in a dynamic manner, which could well adapt to the difficulty of the corresponding challenging scenario. To address the issue that which fusion models should be activated in the tracking process, we design an adaptive aggregation fusion module to integrate all features from attribute-based fusion models in an adaptive manner with a three-stage training algorithm. In addition, we design an enhancement fusion module to further strengthen the aggregated feature and modality-specific features. Experimental results on benchmark datasets demonstrate the effectiveness of our DDFNet against other state-of-the-art methods.
Time series forecasting always faces the challenge of concept drift, where data distributions evolve over time, leading to a decline in forecast model performance. Existing solutions are based on online learning, which continually organize recent time series observations as new training samples and update model parameters according to the forecasting feedback on recent data. However, they overlook a critical issue: obtaining ground-truth future values of each sample should be delayed until after the forecast horizon. This delay creates a temporal gap between the training samples and the test sample. Our empirical analysis reveals that the gap can introduce concept drift, causing forecast models to adapt to outdated concepts. In this paper, we present \textsc{Proceed}, a novel proactive model adaptation framework for online time series forecasting. \textsc{Proceed} first operates by estimating the concept drift between the recently used training samples and the current test sample. It then employs an adaptation generator to efficiently translate the estimated drift into parameter adjustments, proactively adapting the model to the test sample. To enhance the generalization capability of the framework, \textsc{Proceed} is trained on synthetic diverse concept drifts. We conduct extensive experiments on five real-world datasets across various forecast models. The empirical study demonstrates that our proposed \textsc{Proceed} brings more performance improvements than the state-of-the-art online learning methods, significantly facilitating forecast models' resilience against concept drifts.
The BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents, particularly those leveraging automation and Large Language Models (LLMs) for web interaction tasks. Many existing benchmarks suffer from fragmentation and inconsistent evaluation methodologies, making it challenging to achieve reliable comparisons and reproducible results. BrowserGym aims to solve this by providing a unified, gym-like environment with well-defined observation and action spaces, facilitating standardized evaluation across diverse benchmarks. Combined with AgentLab, a complementary framework that aids in agent creation, testing, and analysis, BrowserGym offers flexibility for integrating new benchmarks while ensuring consistent evaluation and comprehensive experiment management. This standardized approach seeks to reduce the time and complexity of developing web agents, supporting more reliable comparisons and facilitating in-depth analysis of agent behaviors, and could result in more adaptable, capable agents, ultimately accelerating innovation in LLM-driven automation. As a supporting evidence, we conduct the first large-scale, multi-benchmark web agent experiment and compare the performance of 6 state-of-the-art LLMs across all benchmarks currently available in BrowserGym. Among other findings, our results highlight a large discrepancy between OpenAI and Anthropic's latests models, with Claude-3.5-Sonnet leading the way on almost all benchmarks, except on vision-related tasks where GPT-4o is superior. Despite these advancements, our results emphasize that building robust and efficient web agents remains a significant challenge, due to the inherent complexity of real-world web environments and the limitations of current models.
Given the vital role that smart meter data could play in handling uncertainty in energy markets, data markets have been proposed as a means to enable increased data access. However, most extant literature considers energy markets and data markets separately, which ignores the interdependence between them. In addition, existing data market frameworks rely on a trusted entity to clear the market. This paper proposes a joint energy and data market focusing on the day-ahead retailer energy procurement problem with uncertain demand. The retailer can purchase differentially-private smart meter data from consumers to reduce uncertainty. The problem is modelled as an integrated forecasting and optimisation problem providing a means of valuing data directly rather than valuing forecasts or forecast accuracy. Value is determined by the Wasserstein distance, enabling privacy to be preserved during the valuation and procurement process. The value of joint energy and data clearing is highlighted through numerical case studies using both synthetic and real smart meter data.
Current video retrieval systems, especially those used in competitions, primarily focus on querying individual keyframes or images rather than encoding an entire clip or video segment. However, queries often describe an action or event over a series of frames, not a specific image. This results in insufficient information when analyzing a single frame, leading to less accurate query results. Moreover, extracting embeddings solely from images (keyframes) does not provide enough information for models to encode higher-level, more abstract insights inferred from the video. These models tend to only describe the objects present in the frame, lacking a deeper understanding. In this work, we propose a system that integrates the latest methodologies, introducing a novel pipeline that extracts multimodal data, and incorporate information from multiple frames within a video, enabling the model to abstract higher-level information that captures latent meanings, focusing on what can be inferred from the video clip, rather than just focusing on object detection in one single image.
Ensemble reasoning for the strengths of different LLM experts is critical to achieving consistent and satisfactory performance on diverse inputs across a wide range of tasks. However, existing LLM ensemble methods are either computationally intensive or incapable of leveraging complementary knowledge among LLM experts for various inputs. In this paper, we propose a Dynamic Ensemble Reasoning paradigm, called DER to integrate the strengths of multiple LLM experts conditioned on dynamic inputs. Specifically, we model the LLM ensemble reasoning problem as a Markov Decision Process (MDP), wherein an agent sequentially takes inputs to request knowledge from an LLM candidate and passes the output to a subsequent LLM candidate. Moreover, we devise a reward function to train a DER-Agent to dynamically select an optimal answering route given the input questions, aiming to achieve the highest performance with as few computational resources as possible. Last, to fully transfer the expert knowledge from the prior LLMs, we develop a Knowledge Transfer Prompt (KTP) that enables the subsequent LLM candidates to transfer complementary knowledge effectively. Experiments demonstrate that our method uses fewer computational resources to achieve better performance compared to state-of-the-art baselines.
Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.