亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces an extended tensor decomposition (XTD) method for model reduction. The proposed method is based on a sparse non-separated enrichment to the conventional tensor decomposition, which is expected to improve the approximation accuracy and the reducibility (compressibility) in highly nonlinear and singular cases. The proposed XTD method can be a powerful tool for solving nonlinear space-time parametric problems. The method has been successfully applied to parametric elastic-plastic problems and real time additive manufacturing residual stress predictions with uncertainty quantification. Furthermore, a combined XTD-SCA (self-consistent clustering analysis) strategy has been presented for multi-scale material modeling, which enables real time multi-scale multi-parametric simulations. The efficiency of the method is demonstrated with comparison to finite element analysis. The proposed method enables a novel framework for fast manufacturing and material design with uncertainties.

相關內容

Point source localisation is generally modelled as a Lasso-type problem on measures. However, optimisation methods in non-Hilbert spaces, such as the space of Radon measures, are much less developed than in Hilbert spaces. Most numerical algorithms for point source localisation are based on the Frank-Wolfe conditional gradient method, for which ad hoc convergence theory is developed. We develop extensions of proximal-type methods to spaces of measures. This includes forward-backward splitting, its inertial version, and primal-dual proximal splitting. Their convergence proofs follow standard patterns. We demonstrate their numerical efficacy.

Trajectory segmentation refers to dividing a trajectory into meaningful consecutive sub-trajectories. This paper focuses on trajectory segmentation for 3D rigid-body motions. Most segmentation approaches in the literature represent the body's trajectory as a point trajectory, considering only its translation and neglecting its rotation. We propose a novel trajectory representation for rigid-body motions that incorporates both translation and rotation, and additionally exhibits several invariant properties. This representation consists of a geometric progress rate and a third-order trajectory-shape descriptor. Concepts from screw theory were used to make this representation time-invariant and also invariant to the choice of body reference point. This new representation is validated for a self-supervised segmentation approach, both in simulation and using real recordings of human-demonstrated pouring motions. The results show a more robust detection of consecutive submotions with distinct features and a more consistent segmentation compared to conventional representations. We believe that other existing segmentation methods may benefit from using this trajectory representation to improve their invariance.

Ordinary state-based peridynamic (OSB-PD) models have an unparalleled capability to simulate crack propagation phenomena in solids with arbitrary Poisson's ratio. However, their non-locality also leads to prohibitively high computational cost. In this paper, a fast solution scheme for OSB-PD models based on matrix operation is introduced, with which, the graphics processing units (GPUs) are used to accelerate the computation. For the purpose of comparison and verification, a commonly used solution scheme based on loop operation is also presented. An in-house software is developed in MATLAB. Firstly, the vibration of a cantilever beam is solved for validating the loop- and matrix-based schemes by comparing the numerical solutions to those produced by a FEM software. Subsequently, two typical dynamic crack propagation problems are simulated to illustrate the effectiveness of the proposed schemes in solving dynamic fracture problems. Finally, the simulation of the Brokenshire torsion experiment is carried out by using the matrix-based scheme, and the similarity in the shapes of the experimental and numerical broken specimens further demonstrates the ability of the proposed approach to deal with 3D non-planar fracture problems. In addition, the speed-up of the matrix-based scheme with respect to the loop-based scheme and the performance of the GPU acceleration are investigated. The results emphasize the high computational efficiency of the matrix-based implementation scheme.

Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning, poised to leverage the nascent capabilities of near-term quantum computers to surmount classical machine learning challenges. Nonetheless, the training efficiency challenge poses a limitation on both QNNs and quantum kernels, curbing their efficacy when applied to extensive datasets. To confront this concern, we present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels by distilling a judicious subset from the original training dataset. Furthermore, we analyze the generalization error bounds of QNNs and quantum kernels when trained on such coresets, unveiling the comparable performance with those training on the complete original dataset. Through systematic numerical simulations, we illuminate the potential of coreset selection in expediting tasks encompassing synthetic data classification, identification of quantum correlations, and quantum compiling. Our work offers a useful way to improve diverse quantum machine learning models with a theoretical guarantee while reducing the training cost.

We evaluate using Julia as a single language and ecosystem paradigm powered by LLVM to develop workflow components for high-performance computing. We run a Gray-Scott, 2-variable diffusion-reaction application using a memory-bound, 7-point stencil kernel on Frontier, the US Department of Energy's first exascale supercomputer. We evaluate the feasibility, performance, scaling, and trade-offs of (i) the computational kernel on AMD's MI250x GPUs, (ii) weak scaling up to 4,096 MPI processes/GPUs or 512 nodes, (iii) parallel I/O writes using the ADIOS2 library bindings, and (iv) Jupyter Notebooks for interactive data analysis. Our results suggest that although Julia generates a reasonable LLVM-IR kernel, a nearly 50\% performance difference exists vs. native AMD HIP stencil codes when running on the GPUs. As expected, we observed near-zero overhead when using MPI and parallel I/O bindings for system-wide installed implementations. Consequently, Julia emerges as a compelling high-performance and high-productivity workflow composition strategy, as measured on the fastest supercomputer in the world.

The possibility of dynamically modifying the computational load of neural models at inference time is crucial for on-device processing, where computational power is limited and time-varying. Established approaches for neural model compression exist, but they provide architecturally static models. In this paper, we investigate the use of early-exit architectures, that rely on intermediate exit branches, applied to large-vocabulary speech recognition. This allows for the development of dynamic models that adjust their computational cost to the available resources and recognition performance. Unlike previous works, besides using pre-trained backbones we also train the model from scratch with an early-exit architecture. Experiments on public datasets show that early-exit architectures from scratch not only preserve performance levels when using fewer encoder layers, but also improve task accuracy as compared to using single-exit models or using pre-trained models. Additionally, we investigate an exit selection strategy based on posterior probabilities as an alternative to frame-based entropy.

We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.

This paper focuses on coordinating a robot swarm orbiting a convex path without collisions among the individuals. The individual robots lack braking capabilities and can only adjust their courses while maintaining their constant but different speeds. Instead of controlling the spatial relations between the robots, our formation control algorithm aims to deploy a dense robot swarm that mimics the behavior of tornado schooling fish. To achieve this objective safely, we employ a combination of a scalable overtaking rule, a guiding vector field, and a control barrier function with an adaptive radius to facilitate smooth overtakes. The decision-making process of the robots is distributed, relying only on local information. Practical applications include defensive structures or escorting missions with the added resiliency of a swarm without a centralized command. We provide a rigorous analysis of the proposed strategy and validate its effectiveness through numerical simulations involving a high density of unicycles.

This paper proposes a method for extracting a lightweight subset from a text-to-speech (TTS) corpus ensuring synthetic speech quality. In recent years, methods have been proposed for constructing large-scale TTS corpora by collecting diverse data from massive sources such as audiobooks and YouTube. Although these methods have gained significant attention for enhancing the expressive capabilities of TTS systems, they often prioritize collecting vast amounts of data without considering practical constraints like storage capacity and computation time in training, which limits the available data quantity. Consequently, the need arises to efficiently collect data within these volume constraints. To address this, we propose a method for selecting the core subset~(known as \textit{core-set}) from a TTS corpus on the basis of a \textit{diversity metric}, which measures the degree to which a subset encompasses a wide range. Experimental results demonstrate that our proposed method performs significantly better than the baseline phoneme-balanced data selection across language and corpus size.

We propose a decoder-only language model, VoxtLM, that can perform four tasks: speech recognition, speech synthesis, text generation, and speech continuation. VoxtLM integrates text vocabulary with discrete speech tokens from self-supervised speech features and uses special tokens to enable multitask learning. Compared to a single-task model, VoxtLM exhibits a significant improvement in speech synthesis, with improvements in both speech intelligibility from 28.9 to 5.6 and objective quality from 2.68 to 3.90. VoxtLM also improves speech generation and speech recognition performance over the single-task counterpart. VoxtLM is trained with publicly available data and training recipes and model checkpoints will be open-sourced to make fully reproducible work.

北京阿比特科技有限公司