Uncertainty quantification (UQ) is a perspective approach to detecting Large Language Model (LLM) hallucinations and low quality output. In this work, we address one of the challenges of UQ in generation tasks that arises from the conditional dependency between the generation steps of an LLM. We propose to learn this dependency from data. We train a regression model, which target variable is the gap between the conditional and the unconditional generation confidence. During LLM inference, we use this learned conditional dependency model to modulate the uncertainty of the current generation step based on the uncertainty of the previous step. Our experimental evaluation on nine datasets and three LLMs shows that the proposed method is highly effective for uncertainty quantification, achieving substantial improvements over rivaling approaches.
Regression testing aims to prevent code changes from breaking existing features. Flaky tests negatively affect regression testing because they result in test failures that are not necessarily caused by code changes, thus providing an ambiguous signal. Test timeouts are one contributing factor to such flaky test failures. With the goal of reducing test flakiness in SAP HANA, we empirically study the impact of test timeouts on flakiness in system tests. We evaluate different approaches to automatically adjust timeout values, assessing their suitability for reducing execution time costs and improving build turnaround times. We collect metadata on SAP HANA's test executions by repeatedly executing tests on the same code revision over a period of six months. We analyze the test flakiness rate, investigate the evolution of test timeout values, and evaluate different approaches for optimizing timeout values. The test flakiness rate ranges from 49% to 70%, depending on the number of repeated test executions. Test timeouts account for 70% of flaky test failures. Developers typically react to flaky timeouts by manually increasing timeout values or splitting long-running tests. However, manually adjusting timeout values is a tedious task. Our approach for timeout optimization reduces timeout-related flaky failures by 80% and reduces the overall median timeout value by 25%, i.e., blocked tests are identified faster. Test timeouts are a major contributing factor to flakiness in system tests. It is challenging for developers to effectively mitigate this problem manually. Our technique for optimizing timeout values reduces flaky failures while minimizing test costs. Practitioners working on large-scale industrial software systems can use our findings to increase the effectiveness of their system tests while reducing the burden on developers to manually maintain appropriate timeout values.
Metamodels, or the regression analysis of Monte Carlo simulation results, provide a powerful tool to summarize simulation findings. However, an underutilized approach is the multilevel metamodel (MLMM) that accounts for the dependent data structure that arises from fitting multiple models to the same simulated data set. In this study, we articulate the theoretical rationale for the MLMM and illustrate how it can improve the interpretability of simulation results, better account for complex simulation designs, and provide new insights into the generalizability of simulation findings.
Reinforcement Learning (RL) has shown its remarkable and generalizable capability in legged locomotion through sim-to-real transfer. However, while adaptive methods like domain randomization are expected to make policy more robust to diverse environments, such comprehensiveness potentially detracts from the policy's performance in any specific environment according to the No Free Lunch theorem, leading to a suboptimal solution once deployed in the real world. To address this issue, we propose a lifelong policy adaptation framework named LoopSR, which utilizes a transformer-based encoder to project real-world trajectories into a latent space, and accordingly reconstruct the real-world environments back in simulation for further improvement. Autoencoder architecture and contrastive learning methods are adopted to better extract the characteristics of real-world dynamics. The simulation parameters for continual training are derived by combining predicted parameters from the decoder with retrieved parameters from the simulation trajectory dataset. By leveraging the continual training, LoopSR achieves superior data efficiency compared with strong baselines, with only a limited amount of data to yield eminent performance in both sim-to-sim and sim-to-real experiments.
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks but their performance in complex logical reasoning tasks remains unsatisfactory. Although some prompting methods, such as Chain-of-Thought, can improve the reasoning ability of LLMs to some extent, they suffer from an unfaithful issue where derived conclusions may not align with the generated reasoning chain. To address this issue, some studies employ the approach of propositional logic to further enhance logical reasoning abilities of LLMs. However, the potential omissions in the extraction of logical expressions in these methods can cause information loss in the logical reasoning process, thereby generating incorrect results. To this end, we propose Logic-of-Thought (LoT) prompting which employs propositional logic to generate expanded logical information from input context, and utilizes the generated logical information as an additional augmentation to the input prompts, thereby enhancing the capability of logical reasoning. The LoT is orthogonal to existing prompting methods and can be seamlessly integrated with them. Extensive experiments demonstrate that LoT boosts the performance of various prompting methods with a striking margin across five logical reasoning tasks. In particular, the LoT enhances Chain-of-Thought's performance on the ReClor dataset by +4.35%; moreover, it improves Chain-of-Thought with Self-Consistency's performance on LogiQA by +5%; additionally, it boosts performance of Tree-of-Thoughts on ProofWriter dataset by +8%.
When large language models (LLMs) are asked to perform certain tasks, how can we be sure that their learned representations align with reality? We propose a domain-agnostic framework for systematically evaluating distribution shifts in LLMs decision-making processes, where they are given control of mechanisms governed by pre-defined rules. While individual LLM actions may appear consistent with expected behavior, across a large number of trials, statistically significant distribution shifts can emerge. To test this, we construct a well-defined environment with known outcome logic: blackjack. In more than 1,000 trials, we uncover statistically significant evidence suggesting behavioral misalignment in the learned representations of LLM.
As edge computing and the Internet of Things (IoT) expand, horizontal collaboration (HC) emerges as a distributed data processing solution for resource-constrained devices. In particular, a convolutional neural network (CNN) model can be deployed on multiple IoT devices, allowing distributed inference execution for image recognition while ensuring model and data privacy. Yet, this distributed architecture remains vulnerable to adversaries who want to make subtle alterations that impact the model, even if they lack access to the entire model. Such vulnerabilities can have severe implications for various sectors, including healthcare, military, and autonomous systems. However, security solutions for these vulnerabilities have not been explored. This paper presents a novel framework for Secure Horizontal Edge with Adversarial Threat Handling (SHEATH) to detect adversarial noise and eliminate its effect on CNN inference by recovering the original feature maps. Specifically, SHEATH aims to address vulnerabilities without requiring complete knowledge of the CNN model in HC edge architectures based on sequential partitioning. It ensures data and model integrity, offering security against adversarial attacks in diverse HC environments. Our evaluations demonstrate SHEATH's adaptability and effectiveness across diverse CNN configurations.
Generative artificial intelligence (GenAI) can reshape education and learning. While large language models (LLMs) like ChatGPT dominate current educational research, multimodal capabilities, such as text-to-speech and text-to-image, are less explored. This study uses topic modeling to map the research landscape of multimodal and generative AI in education. An extensive literature search using Dimensions.ai yielded 4175 articles. Employing a topic modeling approach, latent topics were extracted, resulting in 38 interpretable topics organized into 14 thematic areas. Findings indicate a predominant focus on text-to-text models in educational contexts, with other modalities underexplored, overlooking the broader potential of multimodal approaches. The results suggest a research gap, stressing the importance of more balanced attention across different AI modalities and educational levels. In summary, this research provides an overview of current trends in generative AI for education, underlining opportunities for future exploration of multimodal technologies to fully realize the transformative potential of artificial intelligence in education.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.