This paper aims to address the unsupervised video anomaly detection (VAD) problem, which involves classifying each frame in a video as normal or abnormal, without any access to labels. To accomplish this, the proposed method employs conditional diffusion models, where the input data is the spatiotemporal features extracted from a pre-trained network, and the condition is the features extracted from compact motion representations that summarize a given video segment in terms of its motion and appearance. Our method utilizes a data-driven threshold and considers a high reconstruction error as an indicator of anomalous events. This study is the first to utilize compact motion representations for VAD and the experiments conducted on two large-scale VAD benchmarks demonstrate that they supply relevant information to the diffusion model, and consequently improve VAD performances w.r.t the prior art. Importantly, our method exhibits better generalization performance across different datasets, notably outperforming both the state-of-the-art and baseline methods. The code of our method is available at //github.com/AnilOsmanTur/conditioned_video_anomaly_diffusion
Temporal action detection (TAD) aims to detect all action boundaries and their corresponding categories in an untrimmed video. The unclear boundaries of actions in videos often result in imprecise predictions of action boundaries by existing methods. To resolve this issue, we propose a one-stage framework named TriDet. First, we propose a Trident-head to model the action boundary via an estimated relative probability distribution around the boundary. Then, we analyze the rank-loss problem (i.e. instant discriminability deterioration) in transformer-based methods and propose an efficient scalable-granularity perception (SGP) layer to mitigate this issue. To further push the limit of instant discriminability in the video backbone, we leverage the strong representation capability of pretrained large models and investigate their performance on TAD. Last, considering the adequate spatial-temporal context for classification, we design a decoupled feature pyramid network with separate feature pyramids to incorporate rich spatial context from the large model for localization. Experimental results demonstrate the robustness of TriDet and its state-of-the-art performance on multiple TAD datasets, including hierarchical (multilabel) TAD datasets.
Semantic segmentation is crucial in remote sensing, where high-resolution satellite images are segmented into meaningful regions. Recent advancements in deep learning have significantly improved satellite image segmentation. However, most of these methods are typically trained in fully supervised settings that require high-quality pixel-level annotations, which are expensive and time-consuming to obtain. In this work, we present a weakly supervised learning algorithm to train semantic segmentation algorithms that only rely on query point annotations instead of full mask labels. Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation. Specifically, we generate superpixels and extend the query point labels into those superpixels that group similar meaningful semantics. Then, we train semantic segmentation models, supervised with images partially labeled with the superpixels pseudo-labels. We benchmark our weakly supervised training approach on an aerial image dataset and different semantic segmentation architectures, showing that we can reach competitive performance compared to fully supervised training while reducing the annotation effort.
Navigating in the latent space of StyleGAN has shown effectiveness for face editing. However, the resulting methods usually encounter challenges in complicated navigation due to the entanglement among different attributes in the latent space. To address this issue, this paper proposes a novel framework, termed SDFlow, with a semantic decomposition in original latent space using continuous conditional normalizing flows. Specifically, SDFlow decomposes the original latent code into different irrelevant variables by jointly optimizing two components: (i) a semantic encoder to estimate semantic variables from input faces and (ii) a flow-based transformation module to map the latent code into a semantic-irrelevant variable in Gaussian distribution, conditioned on the learned semantic variables. To eliminate the entanglement between variables, we employ a disentangled learning strategy under a mutual information framework, thereby providing precise manipulation controls. Experimental results demonstrate that SDFlow outperforms existing state-of-the-art face editing methods both qualitatively and quantitatively. The source code is made available at //github.com/phil329/SDFlow.
Data integration is a notoriously difficult and heuristic-driven process, especially when ground-truth data are not readily available. This paper presents a measure of uncertainty by providing maximal and minimal ranges of a query outcome in two-table, one-to-many data integration workflows. Users can use these query results to guide a search through different matching parameters, similarity metrics, and constraints. Even though there are exponentially many such matchings, we show that in appropriately constrained circumstances that this result range can be calculated in polynomial time with bipartite graph matching. We evaluate this on real-world datasets and synthetic datasets, and find that uncertainty estimates are more robust when a graph-matching based approach is used for data integration.
We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.
With the help of Generalized Estimating Equations, we identify locally D-optimal crossover designs for generalized linear models. We adopt the variance of parameters of interest as the objective function, which is minimized using constrained optimization to obtain optimal crossover designs. In this case, the traditional general equivalence theorem could not be used directly to check the optimality of obtained designs. In this manuscript, we derive a corresponding general equivalence theorem for crossover designs under generalized linear models.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.