Semi-supervised learning via teacher-student network can train a model effectively on a few labeled samples. It enables a student model to distill knowledge from the teacher's predictions of extra unlabeled data. However, such knowledge flow is typically unidirectional, having the performance vulnerable to the quality of teacher model. In this paper, we seek to robust 3D reconstruction of stereo endoscopic images by proposing a novel fashion of bidirectional learning between two learners, each of which can play both roles of teacher and student concurrently. Specifically, we introduce two self-supervisions, i.e., Adaptive Cross Supervision (ACS) and Adaptive Parallel Supervision (APS), to learn a dual-branch convolutional neural network. The two branches predict two different disparity probability distributions for the same position, and output their expectations as disparity values. The learned knowledge flows across branches along two directions: a cross direction (disparity guides distribution in ACS) and a parallel direction (disparity guides disparity in APS). Moreover, each branch also learns confidences to dynamically refine its provided supervisions. In ACS, the predicted disparity is softened into a unimodal distribution, and the lower the confidence, the smoother the distribution. In APS, the incorrect predictions are suppressed by lowering the weights of those with low confidence. With the adaptive bidirectional learning, the two branches enjoy well-tuned supervisions from each other, and eventually converge on a consistent and more accurate disparity estimation. The extensive and comprehensive experimental results on three public datasets demonstrate our superior performance over the fully-supervised and semi-supervised state-of-the-arts with a decrease of averaged disparity error by 13.95% and 3.90% at least, respectively.
We introduce Power Bundle Adjustment as an expansion type algorithm for solving large-scale bundle adjustment problems. It is based on the power series expansion of the inverse Schur complement and constitutes a new family of solvers that we call inverse expansion methods. We theoretically justify the use of power series and we prove the convergence of our approach. Using the real-world BAL dataset we show that the proposed solver challenges the state-of-the-art iterative methods and significantly accelerates the solution of the normal equation, even for reaching a very high accuracy. This easy-to-implement solver can also complement a recently presented distributed bundle adjustment framework. We demonstrate that employing the proposed Power Bundle Adjustment as a sub-problem solver significantly improves speed and accuracy of the distributed optimization.
In the past few years, large high-resolution displays (LHRDs) have attracted considerable attention from researchers, industries, and application areas that increasingly rely on data-driven decision-making. An up-to-date survey on the use of LHRDs for interactive data visualization seems warranted to summarize how new solutions meet the characteristics and requirements of LHRDs and take advantage of their unique benefits. In this survey, we start by defining LHRDs and outlining the consequence of LHRD environments on interactive visualizations in terms of more pixels, space, users, and devices. Then, we review related literature along the four axes of visualization, interaction, evaluation studies, and applications. With these four axes, our survey provides a unique perspective and covers a broad range of aspects being relevant when developing interactive visual data analysis solutions for LHRDs. We conclude this survey by reflecting on a number of opportunities for future research to help the community take up the still open challenges of interactive visualization on LHRDs.
Magnetic resonance imaging serves as an essential tool for clinical diagnosis. However, it suffers from a long acquisition time. The utilization of deep learning, especially the deep generative models, offers aggressive acceleration and better reconstruction in magnetic resonance imaging. Nevertheless, learning the data distribution as prior knowledge and reconstructing the image from limited data remains challenging. In this work, we propose a novel Hankel-k-space generative model (HKGM), which can generate samples from a training set of as little as one k-space data. At the prior learning stage, we first construct a large Hankel matrix from k-space data, then extract multiple structured k-space patches from the large Hankel matrix to capture the internal distribution among different patches. Extracting patches from a Hankel matrix enables the generative model to be learned from redundant and low-rank data space. At the iterative reconstruction stage, it is observed that the desired solution obeys the learned prior knowledge. The intermediate reconstruction solution is updated by taking it as the input of the generative model. The updated result is then alternatively operated by imposing low-rank penalty on its Hankel matrix and data consistency con-strain on the measurement data. Experimental results confirmed that the internal statistics of patches within a single k-space data carry enough information for learning a powerful generative model and provide state-of-the-art reconstruction.
Vision Transformers (ViTs) have gained significant popularity in recent years and have proliferated into many applications. However, it is not well explored how varied their behavior is under different learning paradigms. We compare ViTs trained through different methods of supervision, and show that they learn a diverse range of behaviors in terms of their attention, representations, and downstream performance. We also discover ViT behaviors that are consistent across supervision, including the emergence of Offset Local Attention Heads. These are self-attention heads that attend to a token adjacent to the current token with a fixed directional offset, a phenomenon that to the best of our knowledge has not been highlighted in any prior work. Our analysis shows that ViTs are highly flexible and learn to process local and global information in different orders depending on their training method. We find that contrastive self-supervised methods learn features that are competitive with explicitly supervised features, and they can even be superior for part-level tasks. We also find that the representations of reconstruction-based models show non-trivial similarity to contrastive self-supervised models. Finally, we show how the "best" layer for a given task varies by both supervision method and task, further demonstrating the differing order of information processing in ViTs.
Human activity recognition (HAR) using drone-mounted cameras has attracted considerable interest from the computer vision research community in recent years. A robust and efficient HAR system has a pivotal role in fields like video surveillance, crowd behavior analysis, sports analysis, and human-computer interaction. What makes it challenging are the complex poses, understanding different viewpoints, and the environmental scenarios where the action is taking place. To address such complexities, in this paper, we propose a novel Sparse Weighted Temporal Attention (SWTA) module to utilize sparsely sampled video frames for obtaining global weighted temporal attention. The proposed SWTA is comprised of two parts. First, temporal segment network that sparsely samples a given set of frames. Second, weighted temporal attention, which incorporates a fusion of attention maps derived from optical flow, with raw RGB images. This is followed by a basenet network, which comprises a convolutional neural network (CNN) module along with fully connected layers that provide us with activity recognition. The SWTA network can be used as a plug-in module to the existing deep CNN architectures, for optimizing them to learn temporal information by eliminating the need for a separate temporal stream. It has been evaluated on three publicly available benchmark datasets, namely Okutama, MOD20, and Drone-Action. The proposed model has received an accuracy of 72.76%, 92.56%, and 78.86% on the respective datasets thereby surpassing the previous state-of-the-art performances by a margin of 25.26%, 18.56%, and 2.94%, respectively.
In recent years, denoising diffusion models have demonstrated outstanding image generation performance. The information on natural images captured by these models is useful for many image reconstruction applications, where the task is to restore a clean image from its degraded observations. In this work, we propose a conditional sampling scheme that exploits the prior learned by diffusion models while retaining agreement with the observations. We then combine it with a novel approach for adapting pretrained diffusion denoising networks to their input. We examine two adaption strategies: the first uses only the degraded image, while the second, which we advocate, is performed using images that are ``nearest neighbors'' of the degraded image, retrieved from a diverse dataset using an off-the-shelf visual-language model. To evaluate our method, we test it on two state-of-the-art publicly available diffusion models, Stable Diffusion and Guided Diffusion. We show that our proposed `adaptive diffusion for image reconstruction' (ADIR) approach achieves a significant improvement in the super-resolution, deblurring, and text-based editing tasks.
Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.