亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Toward robust malware detection, we explore the attack surface of existing malware detection systems. We conduct root-cause analyses of the practical binary-level black-box adversarial malware examples. Additionally, we uncover the sensitivity of volatile features within the detection engines and exhibit their exploitability. Highlighting volatile information channels within the software, we introduce three software pre-processing steps to eliminate the attack surface, namely, padding removal, software stripping, and inter-section information resetting. Further, to counter the emerging section injection attacks, we propose a graph-based section-dependent information extraction scheme for software representation. The proposed scheme leverages aggregated information within various sections in the software to enable robust malware detection and mitigate adversarial settings. Our experimental results show that traditional malware detection models are ineffective against adversarial threats. However, the attack surface can be largely reduced by eliminating the volatile information. Therefore, we propose simple-yet-effective methods to mitigate the impacts of binary manipulation attacks. Overall, our graph-based malware detection scheme can accurately detect malware with an area under the curve score of 88.32\% and a score of 88.19% under a combination of binary manipulation attacks, exhibiting the efficiency of our proposed scheme.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 知識 (knowledge) · Machine Learning · Learning · INFORMS ·
2023 年 11 月 20 日

People naturally understand emotions, thus permitting a machine to do the same could open new paths for human-computer interaction. Facial expressions can be very useful for emotion recognition techniques, as these are the biggest transmitters of non-verbal cues capable of being correlated with emotions. Several techniques are based on Convolutional Neural Networks (CNNs) to extract information in a machine learning process. However, simple CNNs are not always sufficient to locate points of interest on the face that can be correlated with emotions. In this work, we intend to expand the capacity of emotion recognition techniques by proposing the usage of Facial Action Units (AUs) recognition techniques to recognize emotions. This recognition will be based on the Facial Action Coding System (FACS) and computed by a machine learning system. In particular, our method expands over EmotiRAM, an approach for multi-cue emotion recognition, in which we improve over their facial encoding module.

Combinatorial optimization (CO) problems are often NP-hard and thus out of reach for exact algorithms, making them a tempting domain to apply machine learning methods. The highly structured constraints in these problems can hinder either optimization or sampling directly in the solution space. On the other hand, GFlowNets have recently emerged as a powerful machinery to efficiently sample from composite unnormalized densities sequentially and have the potential to amortize such solution-searching processes in CO, as well as generate diverse solution candidates. In this paper, we design Markov decision processes (MDPs) for different combinatorial problems and propose to train conditional GFlowNets to sample from the solution space. Efficient training techniques are also developed to benefit long-range credit assignment. Through extensive experiments on a variety of different CO tasks with synthetic and realistic data, we demonstrate that GFlowNet policies can efficiently find high-quality solutions. Our implementation is open-sourced at //github.com/zdhNarsil/GFlowNet-CombOpt.

Multimodal emotion recognition aims to recognize emotions for each utterance of multiple modalities, which has received increasing attention for its application in human-machine interaction. Current graph-based methods fail to simultaneously depict global contextual features and local diverse uni-modal features in a dialogue. Furthermore, with the number of graph layers increasing, they easily fall into over-smoothing. In this paper, we propose a method for joint modality fusion and graph contrastive learning for multimodal emotion recognition (Joyful), where multimodality fusion, contrastive learning, and emotion recognition are jointly optimized. Specifically, we first design a new multimodal fusion mechanism that can provide deep interaction and fusion between the global contextual and uni-modal specific features. Then, we introduce a graph contrastive learning framework with inter-view and intra-view contrastive losses to learn more distinguishable representations for samples with different sentiments. Extensive experiments on three benchmark datasets indicate that Joyful achieved state-of-the-art (SOTA) performance compared to all baselines.

The common target speech separation directly estimate the target source, ignoring the interrelationship between different speakers at each frame. We propose a multiple-target speech separation model (MTSS) to simultaneously extract each speaker's voice from the mixed speech rather than just optimally estimating the target source. Moreover, we propose a speaker diarization (SD) aware MTSS system (SD-MTSS), which consists of a SD module and MTSS module. By exploiting the TSVAD decision and the estimated mask, our SD-MTSS model can extract the speech signal of each speaker concurrently in a conversational recording without additional enrollment audio in advance. Experimental results show that our MTSS model achieves 1.38dB SDR, 1.34dB SI-SDR, and 0.13 PESQ improvements over the baseline on the WSJ0-2mix-extr dataset, respectively. The SD-MTSS system makes 19.2% relative speaker dependent character error rate (CER) reduction on the Alimeeting dataset.

We introduce an autonomous system with closed-loop damping for first-order convex optimization. While, to this day, optimal rates of convergence are only achieved by non-autonomous methods via open-loop damping (e.g., Nesterov's algorithm), we show that our system is the first one featuring a closed-loop damping while exhibiting a rate arbitrarily close to the optimal one. We do so by coupling the damping and the speed of convergence of the system via a well-chosen Lyapunov function. We then derive a practical first-order algorithm called LYDIA by discretizing our system, and present numerical experiments supporting our theoretical findings.

We study local computation algorithms (LCA) for maximum matching. An LCA does not return its output entirely, but reveals parts of it upon query. For matchings, each query is a vertex $v$; the LCA should return whether $v$ is matched -- and if so to which neighbor -- while spending a small time per query. In this paper, we prove that any LCA that computes a matching that is at most an additive of $\epsilon n$ smaller than the maximum matching in $n$-vertex graphs of maximum degree $\Delta$ must take at least $\Delta^{\Omega(1/\varepsilon)}$ time. This comes close to the existing upper bounds that take $(\Delta/\epsilon)^{O(1/\epsilon^2)} polylog(n)$ time. In terms of sublinear time algorithms, our techniques imply that any algorithm that estimates the size of maximum matching up to an additive error of $\epsilon n$ must take $\Delta^{\Omega(1/\epsilon)}$ time. This negatively resolves a decade old open problem of the area (see Open Problem 39 of sublinear.info) on whether such estimates can be achieved in $poly(\Delta/\epsilon)$ time.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

This paper explores meta-learning in sequential recommendation to alleviate the item cold-start problem. Sequential recommendation aims to capture user's dynamic preferences based on historical behavior sequences and acts as a key component of most online recommendation scenarios. However, most previous methods have trouble recommending cold-start items, which are prevalent in those scenarios. As there is generally no side information in the setting of sequential recommendation task, previous cold-start methods could not be applied when only user-item interactions are available. Thus, we propose a Meta-learning-based Cold-Start Sequential Recommendation Framework, namely Mecos, to mitigate the item cold-start problem in sequential recommendation. This task is non-trivial as it targets at an important problem in a novel and challenging context. Mecos effectively extracts user preference from limited interactions and learns to match the target cold-start item with the potential user. Besides, our framework can be painlessly integrated with neural network-based models. Extensive experiments conducted on three real-world datasets verify the superiority of Mecos, with the average improvement up to 99%, 91%, and 70% in HR@10 over state-of-the-art baseline methods.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司