Graph Neural Networks (GNNs) have emerged as promising solutions for collaborative filtering (CF) through the modeling of user-item interaction graphs. The nucleus of existing GNN-based recommender systems involves recursive message passing along user-item interaction edges to refine encoded embeddings. Despite their demonstrated effectiveness, current GNN-based methods encounter challenges of limited receptive fields and the presence of noisy ``interest-irrelevant'' connections. In contrast, Transformer-based methods excel in aggregating information adaptively and globally. Nevertheless, their application to large-scale interaction graphs is hindered by inherent complexities and challenges in capturing intricate, entangled structural information. In this paper, we propose TransGNN, a novel model that integrates Transformer and GNN layers in an alternating fashion to mutually enhance their capabilities. Specifically, TransGNN leverages Transformer layers to broaden the receptive field and disentangle information aggregation from edges, which aggregates information from more relevant nodes, thereby enhancing the message passing of GNNs. Additionally, to capture graph structure information effectively, positional encoding is meticulously designed and integrated into GNN layers to encode such structural knowledge into node attributes, thus enhancing the Transformer's performance on graphs. Efficiency considerations are also alleviated by proposing the sampling of the most relevant nodes for the Transformer, along with two efficient sample update strategies to reduce complexity. Furthermore, theoretical analysis demonstrates that TransGNN offers increased expressiveness compared to GNNs, with only a marginal increase in linear complexity. Extensive experiments on five public datasets validate the effectiveness and efficiency of TransGNN.
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at //github. com/sail-sg/lm-random-memory-access.
Large Language Models (LLMs) have witnessed remarkable advancements in recent years, prompting the exploration of tool learning, which integrates LLMs with external tools to address diverse real-world challenges. Assessing the capability of LLMs to utilise tools necessitates large-scale and stable benchmarks. However, previous works relied on either hand-crafted online tools with limited scale, or large-scale real online APIs suffering from instability of API status. To address this problem, we introduce StableToolBench, a benchmark evolving from ToolBench, proposing a virtual API server and stable evaluation system. The virtual API server contains a caching system and API simulators which are complementary to alleviate the change in API status. Meanwhile, the stable evaluation system designs solvable pass and win rates using GPT-4 as the automatic evaluator to eliminate the randomness during evaluation. Experimental results demonstrate the stability of StableToolBench, and further discuss the effectiveness of API simulators, the caching system, and the evaluator system.
Within the Electronic Design Automation (EDA) domain, AI-driven solutions have emerged as formidable tools, yet they typically augment rather than redefine existing methodologies. These solutions often repurpose deep learning models from other domains, such as vision, text, and graph analytics, applying them to circuit design without tailoring to the unique complexities of electronic circuits. Such an AI4EDA approach falls short of achieving a holistic design synthesis and understanding, overlooking the intricate interplay of electrical, logical, and physical facets of circuit data. This perspective paper argues for a paradigm shift from AI4EDA towards AI-native EDA, integrating AI at the core of the design process. Pivotal to this vision is the development of a multimodal circuit representation learning technique, poised to provide a comprehensive understanding by harmonizing and extracting insights from varied data sources, such as functional specifications, RTL designs, circuit netlists, and physical layouts. We champion the creation of large circuit models (LCMs) that are inherently multimodal, crafted to decode and express the rich semantics and structures of circuit data, thus fostering more resilient, efficient, and inventive design methodologies. Embracing this AI-native philosophy, we foresee a trajectory that transcends the current innovation plateau in EDA, igniting a profound shift-left in electronic design methodology. The envisioned advancements herald not just an evolution of existing EDA tools but a revolution, giving rise to novel instruments of design-tools that promise to radically enhance design productivity and inaugurate a new epoch where the optimization of circuit performance, power, and area (PPA) is achieved not incrementally, but through leaps that redefine the benchmarks of electronic systems' capabilities.
Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
Multiplex influence maximization (MIM) asks us to identify a set of seed users such as to maximize the expected number of influenced users in a multiplex network. MIM has been one of central research topics, especially in nowadays social networking landscape where users participate in multiple online social networks (OSNs) and their influences can propagate among several OSNs simultaneously. Although there exist a couple combinatorial algorithms to MIM, learning-based solutions have been desired due to its generalization ability to heterogeneous networks and their diversified propagation characteristics. In this paper, we introduce MIM-Reasoner, coupling reinforcement learning with probabilistic graphical model, which effectively captures the complex propagation process within and between layers of a given multiplex network, thereby tackling the most challenging problem in MIM. We establish a theoretical guarantee for MIM-Reasoner as well as conduct extensive analyses on both synthetic and real-world datasets to validate our MIM-Reasoner's performance.
Optimal design is a critical yet challenging task within many applications. This challenge arises from the need for extensive trial and error, often done through simulations or running field experiments. Fortunately, sequential optimal design, also referred to as Bayesian optimization when using surrogates with a Bayesian flavor, has played a key role in accelerating the design process through efficient sequential sampling strategies. However, a key opportunity exists nowadays. The increased connectivity of edge devices sets forth a new collaborative paradigm for Bayesian optimization. A paradigm whereby different clients collaboratively borrow strength from each other by effectively distributing their experimentation efforts to improve and fast-track their optimal design process. To this end, we bring the notion of consensus to Bayesian optimization, where clients agree (i.e., reach a consensus) on their next-to-sample designs. Our approach provides a generic and flexible framework that can incorporate different collaboration mechanisms. In lieu of this, we propose transitional collaborative mechanisms where clients initially rely more on each other to maneuver through the early stages with scant data, then, at the late stages, focus on their own objectives to get client-specific solutions. Theoretically, we show the sub-linear growth in regret for our proposed framework. Empirically, through simulated datasets and a real-world collaborative sensor design experiment, we show that our framework can effectively accelerate and improve the optimal design process and benefit all participants.
AI-Generated Content (AIGC) is gaining great popularity, with many emerging commercial services and applications. These services leverage advanced generative models, such as latent diffusion models and large language models, to generate creative content (e.g., realistic images and fluent sentences) for users. The usage of such generated content needs to be highly regulated, as the service providers need to ensure the users do not violate the usage policies (e.g., abuse for commercialization, generating and distributing unsafe content). A promising solution to achieve this goal is watermarking, which adds unique and imperceptible watermarks on the content for service verification and attribution. Numerous watermarking approaches have been proposed recently. However, in this paper, we show that an adversary can easily break these watermarking mechanisms. Specifically, we consider two possible attacks. (1) Watermark removal: the adversary can easily erase the embedded watermark from the generated content and then use it freely bypassing the regulation of the service provider. (2) Watermark forging: the adversary can create illegal content with forged watermarks from another user, causing the service provider to make wrong attributions. We propose Warfare, a unified methodology to achieve both attacks in a holistic way. The key idea is to leverage a pre-trained diffusion model for content processing and a generative adversarial network for watermark removal or forging. We evaluate Warfare on different datasets and embedding setups. The results prove that it can achieve high success rates while maintaining the quality of the generated content. Compared to existing diffusion model-based attacks, Warfare is 5,050~11,000x faster.
The moving discontinuous Galerkin method with interface condition enforcement (MDG-ICE) is a high-order, r-adaptive method that treats the grid as a variable and weakly enforces the conservation law, constitutive law, and corresponding interface conditions in order to implicitly fit high-gradient flow features. In this paper, we develop an optimization solver based on the Levenberg-Marquardt algorithm that features an anisotropic, locally adaptive penalty method to enhance robustness and prevent cell degeneration in the computation of hypersonic, viscous flows. Specifically, we incorporate an anisotropic grid regularization based on the mesh-implied metric that inhibits grid motion in directions with small element length scales, an element shape regularization that inhibits nonlinear deformations of the high-order elements, and a penalty regularization that penalizes degenerate elements. Additionally, we introduce a procedure for locally scaling the regularization operators in an adaptive, elementwise manner in order to maintain grid validity. We apply the proposed MDG-ICE formulation to two- and three-dimensional test cases involving viscous shocks and/or boundary layers, including Mach 17.6 hypersonic viscous flow over a circular cylinder and Mach 5 hypersonic viscous flow over a sphere, which are very challenging test cases for conventional numerical schemes on simplicial grids. Even without artificial dissipation, the computed solutions are free from spurious oscillations and yield highly symmetric surface heat-flux profiles.
The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.