亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There is an increase in interest to model driving maneuver patterns via the automatic unsupervised clustering of naturalistic sequential kinematic driving data. The patterns learned are often used in transportation research areas such as eco-driving, road safety, and intelligent vehicles. One such model capable of modeling these patterns is the Hierarchical Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM), as it is often used to estimate data segmentation, state duration, and transition probabilities. While this model is a powerful tool for automatically clustering observed sequential data, the existing HDP-HSMM estimation suffers from an inherent tendency to overestimate the number of states. This can result in poor estimation, which can potentially impact impact transportation research through incorrect inference of driving patterns. In this paper, a new robust HDP-HSMM (rHDP-HSMM) method is proposed to reduce the number of redundant states and improve the consistency of the model's estimation. Both a simulation study and a case study using naturalistic driving data are presented to demonstrate the effectiveness of the proposed rHDP-HSMM in identifying and inference of driving maneuver patterns.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · 無監督 · 可理解性 · Better ·
2024 年 1 月 3 日

Background: Identifying and characterising the longitudinal patterns of multimorbidity associated with stroke is needed to better understand patients' needs and inform new models of care. Methods: We used an unsupervised patient-oriented clustering approach to analyse primary care electronic health records (EHR) of 30 common long-term conditions (LTC), in patients with stroke aged over 18, registered in 41 general practices in south London between 2005 and 2021. Results: Of 849,968 registered patients, 9,847 (1.16%) had a record of stroke, 46.5% were female and median age at record was 65.0 year (IQR: 51.5 to 77.0). The median number of LTCs in addition to stroke was 3 (IQR: from 2 to 5). Patients were stratified in eight clusters. These clusters revealed contrasted patterns of multimorbidity, socio-demographic characteristics (age, gender and ethnicity) and risk factors. Beside a core of 3 clusters associated with conventional stroke risk-factors, minor clusters exhibited less common but recurrent combinations of LTCs including mental health conditions, asthma, osteoarthritis and sickle cell anaemia. Importantly, complex profiles combining mental health conditions, infectious diseases and substance dependency emerged. Conclusion: This patient-oriented approach to EHRs uncovers the heterogeneity of profiles of multimorbidity and socio-demographic characteristics associated with stroke. It highlights the importance of conventional stroke risk factors as well as the association of mental health conditions in complex profiles of multimorbidity displayed in a significant proportion of patients. These results address the need for a better understanding of stroke-associated multimorbidity and complexity to inform more efficient and patient-oriented healthcare models.

We challenge the perceived consensus that the application of deep learning to solve the automated driving planning task necessarily requires huge amounts of real-world data or highly realistic simulation. Focusing on a roundabout scenario, we show that this requirement can be relaxed in favour of targeted, simplistic simulated data. A benefit is that such data can be easily generated for critical scenarios that are typically underrepresented in realistic datasets. By applying vanilla behavioural cloning almost exclusively to lightweight simulated data, we achieve reliable and comfortable driving in a real-world test vehicle. We leverage an incremental development approach that includes regular in-vehicle testing to identify sim-to-real gaps, targeted data augmentation, and training scenario variations. In addition to a detailed description of the methodology, we share our lessons learned, touching upon scenario generation, simulation features, and evaluation metrics.

This work presents an optimization method for the synthesis of finite state machines. The focus is on the reduction in the on-chip area and the cost of the circuit. A list of finite state machines from MCNC91 benchmark circuits have been evolved using Cartesian Genetic Programming. On the average, almost 30% of reduction in the total number of gates has been achieved. The effects of some parameters on the evolutionary process have also been discussed in the paper.

Detection of small, undetermined moving objects or objects in an occluded environment with a cluttered background is the main problem of computer vision. This greatly affects the detection accuracy of deep learning models. To overcome these problems, we concentrate on deep learning models for real-time detection of cars and tanks in an occluded environment with a cluttered background employing SSD and YOLO algorithms and improved precision of detection and reduce problems faced by these models. The developed method makes the custom dataset and employs a preprocessing technique to clean the noisy dataset. For training the developed model we apply the data augmentation technique to balance and diversify the data. We fine-tuned, trained, and evaluated these models on the established dataset by applying these techniques and highlighting the results we got more accurately than without applying these techniques. The accuracy and frame per second of the SSD-Mobilenet v2 model are higher than YOLO V3 and YOLO V4. Furthermore, by employing various techniques like data enhancement, noise reduction, parameter optimization, and model fusion we improve the effectiveness of detection and recognition. We further added a counting algorithm, and target attributes experimental comparison, and made a graphical user interface system for the developed model with features of object counting, alerts, status, resolution, and frame per second. Subsequently, to justify the importance of the developed method analysis of YOLO V3, V4, and SSD were incorporated. Which resulted in the overall completion of the proposed method.

Identifying constitutive parameters in engineering and biological materials, particularly those with intricate geometries and mechanical behaviors, remains a longstanding challenge. The recent advent of Physics-Informed Neural Networks (PINNs) offers promising solutions, but current frameworks are often limited to basic constitutive laws and encounter practical constraints when combined with experimental data. In this paper, we introduce a robust PINN-based framework designed to identify material parameters for soft materials, specifically those exhibiting complex constitutive behaviors, under large deformation in plane stress conditions. Distinctively, our model emphasizes training PINNs with multi-modal synthetic experimental datasets consisting of full-field deformation and loading history, ensuring algorithm robustness even with noisy data. Our results reveal that the PINNs framework can accurately identify constitutive parameters of the incompressible Arruda-Boyce model for samples with intricate geometries, maintaining an error below 5%, even with an experimental noise level of 5%. We believe our framework provides a robust modulus identification approach for complex solids, especially for those with geometrical and constitutive complexity.

The real power of artificial intelligence appears in reinforcement learning, which is computationally and physically more sophisticated due to its dynamic nature. Rotation and injection are some of the proven ways in active flow control for drag reduction on blunt bodies. In this paper, rotation will be added to the cylinder alongside the deep reinforcement learning (DRL) algorithm, which uses multiple controlled jets to reach the maximum possible drag suppression. Characteristics of the DRL code, including controlling parameters, their limitations, and optimization of the DRL network for use with rotation will be presented. This work will focus on optimizing the number and positions of the jets, the sensors location, and the maximum allowed flow rate to jets in the form of the maximum allowed flow rate of each actuation and the total number of them per episode. It is found that combining the rotation and DRL is promising since it suppresses the vortex shedding, stabilizes the Karman vortex street, and reduces the drag coefficient by up to 49.75%. Also, it will be shown that having more sensors at more locations is not always a good choice and the sensor number and location should be determined based on the need of the user and corresponding configuration. Also, allowing the agent to have access to higher flow rates, mostly reduces the performance, except when the cylinder rotates. In all cases, the agent can keep the lift coefficient at a value near zero, or stabilize it at a smaller number.

The perfectly matched layers method is a well known truncation technique for its efficiency and convenience in numerical implementations of wave scattering problems in unbounded domains. In this paper, we study the convergence of the perfectly matched layers (PML) for wave scattering from a local perturbation of an open waveguide in the half space above the real line, where the refractive index is a function which is periodic along the axis of the waveguide and equals to one above a finite height. The problem is challenging due to the existence of guided waves, and a typical way to deal with the difficulty is to apply the limiting absorption principle. Based on the Floquet-Bloch transform and a curve deformation theory, the solution from the limiting absorption principle is rewritten as the integral of a coupled family of quasi-periodic problems with respect to the quasi-periodicity parameter on a particularly designed curve. By comparing the Dirichlet-to-Neumann maps on a straight line above the locally perturbed periodic layer, we finally show that the PML method converges exponentially with respect to the PML parameter. Finally, the numerical examples are shown to illustrate the theoretical results.

The fisheye camera, with its unique wide field of view and other characteristics, has found extensive applications in various fields. However, the fisheye camera suffers from significant distortion compared to pinhole cameras, resulting in distorted images of captured objects. Fish-eye camera distortion is a common issue in digital image processing, requiring effective correction techniques to enhance image quality. This review provides a comprehensive overview of various methods used for fish-eye camera distortion correction. The article explores the polynomial distortion model, which utilizes polynomial functions to model and correct radial distortions. Additionally, alternative approaches such as panorama mapping, grid mapping, direct methods, and deep learning-based methods are discussed. The review highlights the advantages, limitations, and recent advancements of each method, enabling readers to make informed decisions based on their specific needs.

We present a tool for exploring the design space of shaders using an interactive evolutionary algorithm integrated with the Unity editor, a well-known commercial tool for video game development. Our framework leverages the underlying graph-based representation of recent shader editors and interactive evolution to allow designers to explore several visual options starting from an existing shader. Our framework encodes the graph representation of a current shader as a chromosome used to seed the evolution of a shader population. It applies graph-based recombination and mutation with a set of heuristics to create feasible shaders. The framework is an extension of the Unity editor; thus, designers with little knowledge of evolutionary computation (and shader programming) can interact with the underlying evolutionary engine using the same visual interface used for working on game scenes.

We consider the problem of evaluating dynamic consistency in discrete time probabilistic filters that approximate stochastic system state densities with Gaussian mixtures. Dynamic consistency means that the estimated probability distributions correctly describe the actual uncertainties. As such, the problem of consistency testing naturally arises in applications with regards to estimator tuning and validation. However, due to the general complexity of the density functions involved, straightforward approaches for consistency testing of mixture-based estimators have remained challenging to define and implement. This paper derives a new exact result for Gaussian mixture consistency testing within the framework of normalized deviation squared (NDS) statistics. It is shown that NDS test statistics for generic multivariate Gaussian mixture models exactly follow mixtures of generalized chi-square distributions, for which efficient computational tools are available. The accuracy and utility of the resulting consistency tests are numerically demonstrated on static and dynamic mixture estimation examples.

北京阿比特科技有限公司