We provide the first stochastic convergence rates for a family of adaptive quadrature rules used to normalize the posterior distribution in Bayesian models. Our results apply to the uniform relative error in the approximate posterior density, the coverage probabilities of approximate credible sets, and approximate moments and quantiles, therefore guaranteeing fast asymptotic convergence of approximate summary statistics used in practice. The family of quadrature rules includes adaptive Gauss-Hermite quadrature, and we apply this rule in two challenging low-dimensional examples. Further, we demonstrate how adaptive quadrature can be used as a crucial component of a modern approximate Bayesian inference procedure for high-dimensional additive models. The method is implemented and made publicly available in the aghq package for the R language, available on CRAN.
In this paper, we consider a fully-discrete approximation of an abstract evolution equation deploying a non-conforming spatial approximation and finite differences in time (Rothe-Galerkin method). The main result is the convergence of the discrete solutions to a weak solution of the continuous problem. Therefore, the result can be interpreted either as a justification of the numerical method or as an alternative way of constructing weak solutions. We formulate the problem in the very general and abstract setting of so-called non-conforming Bochner pseudo-monotone operators, which allows for a unified treatment of several evolution problems. Our abstract results for non-conforming Bochner pseudo-monotone operators allow to establish (weak) convergence just by verifying a few natural assumptions on the operators time-by-time and on the discretization spaces. Hence, applications and extensions to several other evolution problems can be performed easily. We exemplify the applicability of our approach on several DG schemes for the unsteady $p$-Navier-Stokes problem. The results of some numerical experiments are reported in the final section.
This paper provides estimation and inference methods for an identified set's boundary (i.e., support function) where the selection among a very large number of covariates is based on modern regularized tools. I characterize the boundary using a semiparametric moment equation. Combining Neyman-orthogonality and sample splitting ideas, I construct a root-N consistent, uniformly asymptotically Gaussian estimator of the boundary and propose a multiplier bootstrap procedure to conduct inference. I apply this result to the partially linear model, the partially linear IV model and the average partial derivative with an interval-valued outcome.
For solving a broad class of nonconvex programming problems on an unbounded constraint set, we provide a self-adaptive step-size strategy that does not include line-search techniques and establishes the convergence of a generic approach under mild assumptions. Specifically, the objective function may not satisfy the convexity condition. Unlike descent line-search algorithms, it does not need a known Lipschitz constant to figure out how big the first step should be. The crucial feature of this process is the steady reduction of the step size until a certain condition is fulfilled. In particular, it can provide a new gradient projection approach to optimization problems with an unbounded constrained set. The correctness of the proposed method is verified by preliminary results from some computational examples. To demonstrate the effectiveness of the proposed technique for large-scale problems, we apply it to some experiments on machine learning, such as supervised feature selection, multi-variable logistic regressions and neural networks for classification.
Leveraging well-established MCMC strategies, we propose MCMC-interactive variational inference (MIVI) to not only estimate the posterior in a time constrained manner, but also facilitate the design of MCMC transitions. Constructing a variational distribution followed by a short Markov chain that has parameters to learn, MIVI takes advantage of the complementary properties of variational inference and MCMC to encourage mutual improvement. On one hand, with the variational distribution locating high posterior density regions, the Markov chain is optimized within the variational inference framework to efficiently target the posterior despite a small number of transitions. On the other hand, the optimized Markov chain with considerable flexibility guides the variational distribution towards the posterior and alleviates its underestimation of uncertainty. Furthermore, we prove the optimized Markov chain in MIVI admits extrapolation, which means its marginal distribution gets closer to the true posterior as the chain grows. Therefore, the Markov chain can be used separately as an efficient MCMC scheme. Experiments show that MIVI not only accurately and efficiently approximates the posteriors but also facilitates designs of stochastic gradient MCMC and Gibbs sampling transitions.
The aim of this note is to state a couple of general results about the properties of the penalized maximum likelihood estimators (pMLE) and of the posterior distribution for parametric models in a non-asymptotic setup and for possibly large or even infinite parameter dimension. We consider a special class of stochastically linear smooth (SLS) models satisfying two major conditions: the stochastic component of the log-likelihood is linear in the model parameter, while the expected log-likelihood is a smooth function. The main results simplify a lot if the expected log-likelihood is concave. For the pMLE, we establish a number of finite sample bounds about its concentration and large deviations as well as the Fisher and Wilks expansion. The later results extend the classical asymptotic Fisher and Wilks Theorems about the MLE to the non-asymptotic setup with large parameter dimension which can depend on the sample size. For the posterior distribution, our main result states a Gaussian approximation of the posterior which can be viewed as a finite sample analog of the prominent Bernstein--von Mises Theorem. In all bounds, the remainder is given explicitly and can be evaluated in terms of the effective sample size and effective parameter dimension. The results are dimension and coordinate free. In spite of generality, all the presented bounds are nearly sharp and the classical asymptotic results can be obtained as simple corollaries. Interesting cases of logit regression and of estimation of a log-density with smooth or truncation priors are used to specify the results and to explain the main notions.
Past research on software product lines has focused on the initial development of reusable assets and related challenges, such as cost estimation and implementation issues. Naturally, as software product lines are increasingly adopted throughout industry, their ongoing maintenance and evolution are getting more attention as well. However, it is not clear to what degree research is following this trend, and where the interests and demands of the industry lie. In this technical report, we provide a survey and comparison of selected publications on software product line maintenance and evolution at SPLC. In particular, we analyze and discuss similarities and differences of these papers with regard to their affiliation with industry and academia. From this, we infer directions for future research that pave the way for systematic and organized evolution of software product lines, from which industry may benefit as well.
Over the past 27 years, quantum computing has seen a huge rise in interest from both academia and industry. At the current rate, quantum computers are growing in size rapidly backed up by the increase of research in the field. Significant efforts are being made to improve the reliability of quantum hardware and to develop suitable software to program quantum computers. In contrast, the verification of quantum programs has received relatively less attention. Verifying programs is especially important in the quantum setting due to how difficult it is to program complex algorithms correctly on resource-constrained and error-prone quantum hardware. Research into creating verification frameworks for quantum programs has seen recent development, with a variety of tools implemented using a collection of theoretical ideas. This survey aims to be a short introduction into the area of formal verification of quantum programs, bringing together theory and tools developed to date. Further, this survey examines some of the challenges that the field may face in the future, namely the development of complex quantum algorithms.
Nonlinear Markov Chains (nMC) are regarded as the original (linear) Markov Chains with nonlinear small perturbations. It fits real-world data better, but its associated properties are difficult to describe. A new approach is proposed to analyze the ergodicity and even estimate the convergence bounds of nMC, which is more precise than existing results. In the new method, Coupling Markov about homogeneous Markov chains is applied to reconstitute the relationship between distribution at any times and the limiting distribution. The convergence bounds can be provided by the transition probability matrix of Coupling Markov. Moreover, a new volatility called TV Volatility can be calculated through the convergence bounds, wavelet analysis and Gaussian HMM. It's tested to estimate the volatility of two securities (TSLA and AMC). The results show TV Volatility can reflect the magnitude of the change of square returns in a period wonderfully.
We study the sparse high-dimensional Gaussian mixture model when the number of clusters is allowed to grow with the sample size. A minimax lower bound for parameter estimation is established, and we show that a constrained maximum likelihood estimator achieves the minimax lower bound. However, this optimization-based estimator is computationally intractable because the objective function is highly nonconvex and the feasible set involves discrete structures. To address the computational challenge, we propose a Bayesian approach to estimate high-dimensional Gaussian mixtures whose cluster centers exhibit sparsity using a continuous spike-and-slab prior. Posterior inference can be efficiently computed using an easy-to-implement Gibbs sampler. We further prove that the posterior contraction rate of the proposed Bayesian method is minimax optimal. The mis-clustering rate is obtained as a by-product using tools from matrix perturbation theory. The proposed Bayesian sparse Gaussian mixture model does not require pre-specifying the number of clusters, which can be adaptively estimated via the Gibbs sampler. The validity and usefulness of the proposed method is demonstrated through simulation studies and the analysis of a real-world single-cell RNA sequencing dataset.
Digital quantum simulation (DQS) of continuous-variable quantum systems in the position basis requires efficient implementation of diagonal unitaries approximating the time evolution operator generated by the potential energy function. In this work, we provide efficient implementations suitable for potential functions approximable by piecewise polynomials, with either uniform or adaptively chosen subdomains. For a fixed precision of approximation, we show how adaptive grids can significantly reduce the total gate count at the cost of introducing a small number of ancillary qubits. We demonstrate the circuit construction with both physically motivated and artificially designed potential functions, and discuss their generalizations to higher dimensions.