In this paper, we design the joint decoding (JD) of non-orthogonal multiple access (NOMA) systems employing short block length codes. We first proposed a low-complexity soft-output ordered-statistics decoding (LC-SOSD) based on a decoding stopping condition, derived from approximations of the a-posterior probabilities of codeword estimates. Simulation results show that LC-SOSD has the similar mutual information transform property to the original SOSD with a significantly reduced complexity. Then, based on the analysis, an efficient JD receiver which combines the parallel interference cancellation (PIC) and the proposed LC-SOSD is developed for NOMA systems. Two novel techniques, namely decoding switch (DS) and decoding combiner (DC), are introduced to accelerate the convergence speed. Simulation results show that the proposed receiver can achieve a lower bit-error rate (BER) compared to the successive interference cancellation (SIC) decoding over the additive-white-Gaussian-noise (AWGN) and fading channel, with a lower complexity in terms of the number of decoding iterations.
An improved Singleton-type upper bound is presented for the list decoding radius of linear codes, in terms of the code parameters [n,k,d] and the list size L. L-MDS codes are then defined as codes that attain this bound (under a slightly stronger notion of list decodability), with 1-MDS codes corresponding to ordinary linear MDS codes. Several properties of such codes are presented; in particular, it is shown that the 2-MDS property is preserved under duality. Finally, explicit constructions for 2-MDS codes are presented through generalized Reed-Solomon (GRS) codes.
We previously proposed the first nontrivial examples of a code having support $t$-designs for all weights obtained from the Assmus-Mattson theorem and having support $t'$-designs for some weights with some $t'>t$. This suggests the possibility of generalizing the Assmus-Mattson theorem, which is very important in design and coding theory. In the present paper, we generalize this example as a strengthening of the Assmus-Mattson theorem along this direction. As a corollary, we provide a new characterization of the extended Golay code $\mathcal{G}_{24}$.
The mutual information (MI) of Gaussian multi-input multi-output (MIMO) channels has been evaluated by utilizing random matrix theory (RMT) and shown to asymptotically follow Gaussian distribution, where the ergodic mutual information (EMI) converges to a deterministic quantity. However, with non-Gaussian channels, there is a bias between the EMI and its deterministic equivalent (DE), whose evaluation is not available in the literature. This bias of the EMI is related to the bias for the trace of the resolvent in large RMT. In this paper, we first derive the bias for the trace of the resolvent, which is further extended to compute the bias for the linear spectral statistics (LSS). Then, we apply the above results on non-Gaussian MIMO channels to determine the bias for the EMI. It is also proved that the bias for the EMI is $-0.5$ times of that for the variance of the MI. Finally, the derived bias is utilized to modify the central limit theory (CLT) and calculate the outage probability. Numerical results show that the modified CLT significantly outperforms previous methods in approximating the distribution of the MI and improves the accuracy for the outage probability evaluation.
The core requirement of massive Machine-Type Communication (mMTC) is to support reliable and fast access for an enormous number of machine-type devices (MTDs). In many practical applications, the base station (BS) only concerns the list of received messages instead of the source information, introducing the emerging concept of unsourced random access (URA). Although some massive multiple-input multiple-output (MIMO) URA schemes have been proposed recently, the unique propagation properties of millimeter-wave (mmWave) massive MIMO systems are not fully exploited in conventional URA schemes. In grant-free random access, the BS cannot perform receive beamforming independently as the identities of active users are unknown to the BS. Therefore, only the intrinsic beam division property can be exploited to improve the decoding performance. In this paper, a URA scheme based on beam-space tree decoding is proposed for mmWave massive MIMO system. Specifically, two beam-space tree decoders are designed based on hard decision and soft decision, respectively, to utilize the beam division property. They both leverage the beam division property to assist in discriminating the sub-blocks transmitted from different users. Besides, the first decoder can reduce the searching space, enjoying a low complexity. The second decoder exploits the advantage of list decoding to recover the miss-detected packets. Simulation results verify the superiority of the proposed URA schemes compared to the conventional URA schemes in terms of error probability.
In this work we propose RELDEC, a novel approach for sequential decoding of moderate length low-density parity-check (LDPC) codes. The main idea behind RELDEC is that an optimized decoding policy is subsequently obtained via reinforcement learning based on a Markov decision process (MDP). In contrast to our previous work, where an agent learns to schedule only a single check node (CN) within a group (cluster) of CNs per iteration, in this work we train the agent to schedule all CNs in a cluster, and all clusters in every iteration. That is, in each learning step of RELDEC an agent learns to schedule CN clusters sequentially depending on a reward associated with the outcome of scheduling a particular cluster. We also modify the state space representation of the MDP, enabling RELDEC to be suitable for larger block length LDPC codes than those studied in our previous work. Furthermore, to address decoding under varying channel conditions, we propose two related schemes, namely, agile meta-RELDEC (AM-RELDEC) and meta-RELDEC (M-RELDEC), both of which employ meta-reinforcement learning. The proposed RELDEC scheme significantly outperforms standard flooding and random sequential decoding for a variety of LDPC codes, including codes designed for 5G new radio.
Answering compositional questions that require multiple steps of reasoning against text is challenging, especially when they involve discrete, symbolic operations. Neural module networks (NMNs) learn to parse such questions as executable programs composed of learnable modules, performing well on synthetic visual QA domains. However, we find that it is challenging to learn these models for non-synthetic questions on open-domain text, where a model needs to deal with the diversity of natural language and perform a broader range of reasoning. We extend NMNs by: (a) introducing modules that reason over a paragraph of text, performing symbolic reasoning (such as arithmetic, sorting, counting) over numbers and dates in a probabilistic and differentiable manner; and (b) proposing an unsupervised auxiliary loss to help extract arguments associated with the events in text. Additionally, we show that a limited amount of heuristically-obtained question program and intermediate module output supervision provides sufficient inductive bias for accurate learning. Our proposed model significantly outperforms state-of-the-art models on a subset of the DROP dataset that poses a variety of reasoning challenges that are covered by our modules.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention mechanisms directly select a subset of tokens but are difficult and inefficient to train due to their combinatorial nature. In this paper, we integrate both soft and hard attention into one context fusion model, "reinforced self-attention (ReSA)", for the mutual benefit of each other. In ReSA, a hard attention trims a sequence for a soft self-attention to process, while the soft attention feeds reward signals back to facilitate the training of the hard one. For this purpose, we develop a novel hard attention called "reinforced sequence sampling (RSS)", selecting tokens in parallel and trained via policy gradient. Using two RSS modules, ReSA efficiently extracts the sparse dependencies between each pair of selected tokens. We finally propose an RNN/CNN-free sentence-encoding model, "reinforced self-attention network (ReSAN)", solely based on ReSA. It achieves state-of-the-art performance on both Stanford Natural Language Inference (SNLI) and Sentences Involving Compositional Knowledge (SICK) datasets.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.