The elastic energy of a bending-resistant interface depends both on its geometry and its material composition. We consider such a heterogeneous interface in the plane, modeled by a curve equipped with an additional density function. The resulting energy captures the complex interplay between curvature and density effects, resembling the Canham-Helfrich functional. We describe the curve by its inclination angle, so that the equilibrium equations reduce to an elliptic system of second order. After a brief variational discussion, we investigate the associated nonlocal $L^2$-gradient flow evolution, a coupled quasilinear parabolic problem. We analyze the (non)preservation of quantities such as convexity, positivity, and symmetry, as well as the asymptotic behavior of the system. The results are illustrated by numerical experiments.
Superconvergence of differential structure on discretized surfaces is studied in this paper. The newly introduced geometric supercloseness provides us with a fundamental tool to prove the superconvergence of gradient recovery on deviated surfaces. An algorithmic framework for gradient recovery without exact geometric information is introduced. Several numerical examples are documented to validate the theoretical results.
Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue. We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.
We study the canonical variables based numerical schemes of a hybrid model with kinetic ions and mass-less electrons. Two equivalent formulations of the hybrid model are presented with the vector potentials in different gauges and the distribution functions depending on canonical momentum (not velocity), which constitutes a pair of canonical variables with the position variable. Particle-in-cell methods are used for the distribution functions, and the vector potentials are discretized by the finite element methods in the framework of finite element exterior calculus. Splitting methods are used for the time discretizations. It is illustrated that the second formulation is numerically superior and the schemes constructed based on the anti-symmetric bracket proposed have better conservation properties and lower noise, although the filters can be used to improve the schemes of the first formulation.
Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations. Here, we present a principled computational model for neuromorphic systems in terms of spatio-temporal receptive fields, based on affine Gaussian kernels over space and leaky-integrator and leaky integrate-and-fire models over time. Our theory is provably covariant to spatial affine and temporal scaling transformations, and with close similarities to the visual processing in mammalian brains. We use these spatio-temporal receptive fields as a prior in an event-based vision task, and show that this improves the training of spiking networks, which otherwise is known as problematic for event-based vision. This work combines efforts within scale-space theory and computational neuroscience to identify theoretically well-founded ways to process spatio-temporal signals in neuromorphic systems. Our contributions are immediately relevant for signal processing and event-based vision, and can be extended to other processing tasks over space and time, such as memory and control.
Deep learning has gained immense popularity in the Earth sciences as it enables us to formulate purely data-driven models of complex Earth system processes. Deep learning-based weather prediction (DLWP) models have made significant progress in the last few years, achieving forecast skills comparable to established numerical weather prediction models with comparatively lesser computational costs. In order to train accurate, reliable, and tractable DLWP models with several millions of parameters, the model design needs to incorporate suitable inductive biases that encode structural assumptions about the data and the modelled processes. When chosen appropriately, these biases enable faster learning and better generalisation to unseen data. Although inductive biases play a crucial role in successful DLWP models, they are often not stated explicitly and their contribution to model performance remains unclear. Here, we review and analyse the inductive biases of state-of-the-art DLWP models with respect to five key design elements: data selection, learning objective, loss function, architecture, and optimisation method. We identify the most important inductive biases and highlight potential avenues towards more efficient and probabilistic DLWP models.
The Runge--Kutta discontinuous Galerkin (RKDG) method is a high-order technique for addressing hyperbolic conservation laws, which has been refined over recent decades and is effective in handling shock discontinuities. Despite its advancements, the RKDG method faces challenges, such as stringent constraints on the explicit time-step size and reduced robustness when dealing with strong discontinuities. On the other hand, the Gas-Kinetic Scheme (GKS) based on a high-order gas evolution model also delivers significant accuracy and stability in solving hyperbolic conservation laws through refined spatial and temporal discretizations. Unlike RKDG, GKS allows for more flexible CFL number constraints and features an advanced flow evolution mechanism at cell interfaces. Additionally, GKS' compact spatial reconstruction enhances the accuracy of the method and its ability to capture stable strong discontinuities effectively. In this study, we conduct a thorough examination of the RKDG method using various numerical fluxes and the GKS method employing both compact and non-compact spatial reconstructions. Both methods are applied under the framework of explicit time discretization and are tested solely in inviscid scenarios. We will present numerous numerical tests and provide a comparative analysis of the outcomes derived from these two computational approaches.
In evidence synthesis, effect modifiers are typically described as variables that induce treatment effect heterogeneity at the individual level, through treatment-covariate interactions in an outcome model parametrized at such level. As such, effect modification is defined with respect to a conditional measure, but marginal effect estimates are required for population-level decisions in health technology assessment. For non-collapsible measures, purely prognostic variables that are not determinants of treatment response at the individual level may modify marginal effects, even where there is individual-level treatment effect homogeneity. With heterogeneity, marginal effects for measures that are not directly collapsible cannot be expressed in terms of marginal covariate moments, and generally depend on the joint distribution of conditional effect measure modifiers and purely prognostic variables. There are implications for recommended practices in evidence synthesis. Unadjusted anchored indirect comparisons can be biased in the absence of individual-level treatment effect heterogeneity, or when marginal covariate moments are balanced across studies. Covariate adjustment may be necessary to account for cross-study imbalances in joint covariate distributions involving purely prognostic variables. In the absence of individual patient data for the target, covariate adjustment approaches are inherently limited in their ability to remove bias for measures that are not directly collapsible. Directly collapsible measures would facilitate the transportability of marginal effects between studies by: (1) reducing dependence on model-based covariate adjustment where there is individual-level treatment effect homogeneity or marginal covariate moments are balanced; and (2) facilitating the selection of baseline covariates for adjustment where there is individual-level treatment effect heterogeneity.
Realizing computationally complex quantum circuits in the presence of noise and imperfections is a challenging task. While fault-tolerant quantum computing provides a route to reducing noise, it requires a large overhead for generic algorithms. Here, we develop and analyze a hardware-efficient, fault-tolerant approach to realizing complex sampling circuits. We co-design the circuits with the appropriate quantum error correcting codes for efficient implementation in a reconfigurable neutral atom array architecture, constituting what we call a fault-tolerant compilation of the sampling algorithm. Specifically, we consider a family of $[[2^D , D, 2]]$ quantum error detecting codes whose transversal and permutation gate set can realize arbitrary degree-$D$ instantaneous quantum polynomial (IQP) circuits. Using native operations of the code and the atom array hardware, we compile a fault-tolerant and fast-scrambling family of such IQP circuits in a hypercube geometry, realized recently in the experiments by Bluvstein et al. [Nature 626, 7997 (2024)]. We develop a theory of second-moment properties of degree-$D$ IQP circuits for analyzing hardness and verification of random sampling by mapping to a statistical mechanics model. We provide evidence that sampling from hypercube IQP circuits is classically hard to simulate and analyze the linear cross-entropy benchmark (XEB) in comparison to the average fidelity. To realize a fully scalable approach, we first show that Bell sampling from degree-$4$ IQP circuits is classically intractable and can be efficiently validated. We further devise new families of $[[O(d^D),D,d]]$ color codes of increasing distance $d$, permitting exponential error suppression for transversal IQP sampling. Our results highlight fault-tolerant compiling as a powerful tool in co-designing algorithms with specific error-correcting codes and realistic hardware.
We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.