亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many of today's online services provide personalized recommendations to their users. Such recommendations are typically designed to serve certain user needs, e.g., to quickly find relevant content in situations of information overload. Correspondingly, the academic literature in the field largely focuses on the value of recommender systems for the end user. In this context, one underlying assumption is that the improved service that is achieved through the recommendations will in turn positively impact the organization's goals, e.g., in the form of higher customer retention or loyalty. However, in reality, recommender systems can be used to target organizational economic goals more directly by incorporating monetary considerations such as price awareness and profitability aspects into the underlying recommendation models. In this work, we survey the existing literature on what we call Economic Recommender Systems based on a systematic review approach that helped us identify 133 relevant papers. We first categorize existing works along different dimensions and then review the most important technical approaches from the literature. Furthermore, we discuss common methodologies to evaluate such systems and finally outline the limitations of today's research and future directions.

相關內容

推薦系統,是指根據用戶的習慣、偏好或興趣,從不斷到來的大規模信息中識別滿足用戶興趣的信息的過程。推薦推薦任務中的信息往往稱為物品(Item)。根據具體應用背景的不同,這些物品可以是新聞、電影、音樂、廣告、商品等各種對象。推薦系統利用電子商務網站向客戶提供商品信息和建議,幫助用戶決定應該購買什么產品,模擬銷售人員幫助客戶完成購買過程。個性化推薦是根據用戶的興趣特點和購買行為,向用戶推薦用戶感興趣的信息和商品。隨著電子商務規模的不斷擴大,商品個數和種類快速增長,顧客需要花費大量的時間才能找到自己想買的商品。這種瀏覽大量無關的信息和產品過程無疑會使淹沒在信息過載問題中的消費者不斷流失。為了解決這些問題,個性化推薦系統應運而生。個性化推薦系統是建立在海量數據挖掘基礎上的一種高級商務智能平臺,以幫助電子商務網站為其顧客購物提供完全個性化的決策支持和信息服務。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Patient privacy is a major barrier to healthcare AI. For confidentiality reasons, most patient data remains in silo in separate hospitals, preventing the design of data-driven healthcare AI systems that need large volumes of patient data to make effective decisions. A solution to this is collective learning across multiple sites through federated learning with differential privacy. However, literature in this space typically focuses on differentially private statistical estimation and machine learning, which is different from the causal inference-related problems that arise in healthcare. In this work, we take a fresh look at federated learning with a focus on causal inference; specifically, we look at estimating the average treatment effect (ATE), an important task in causal inference for healthcare applications, and provide a federated analytics approach to enable ATE estimation across multiple sites along with differential privacy (DP) guarantees at each site. The main challenge comes from site heterogeneity -- different sites have different sample sizes and privacy budgets. We address this through a class of per-site estimation algorithms that reports the ATE estimate and its variance as a quality measure, and an aggregation algorithm on the server side that minimizes the overall variance of the final ATE estimate. Our experiments on real and synthetic data show that our method reliably aggregates private statistics across sites and provides better privacy-utility tradeoff under site heterogeneity than baselines.

A reconstruction scheme based on one-bit intensity-only measurement with a coded aperture is shown to possess remarkable noise robustness in 3D diffraction tomography.

Beyond the great cognitive powers showcased by language models, it is crucial to scrutinize whether their reasoning capabilities stem from strong generalization or merely exposure to relevant data. As opposed to constructing increasingly complex logic, this paper probes into the boolean logic, the root capability of a logical reasoner. We find that any pre-trained language models even including large language models only behave like a random selector in the face of multi-nested boolean logic, a task that humans can handle with ease. To empower language models with this fundamental capability, this paper proposes a new self-supervised learning method \textit{Curriculum Logical Reasoning} (\textsc{Clr}), where we augment the training data with nested boolean logic chain step-by-step, and program the training from simpler logical patterns gradually to harder ones. This new training paradigm allows language models to effectively generalize to much harder and longer-hop logic, which can hardly be learned through naive training. Furthermore, we show that boolean logic is a great foundation for improving the subsequent general logical tasks.

Although single object trackers have achieved advanced performance, their large-scale network models make it difficult to apply them on the platforms with limited resources. Moreover, existing lightweight trackers only achieve balance between 2-3 points in terms of parameters, performance, Flops and FPS. To achieve the balance among all 4 points, this paper propose a lightweight full-convolutional Siamese tracker called lightFC. LightFC employs a noval efficient cross-correlation module (ECM) and a noval efficient rep-center head (ERH) to enhance the nonlinear expressiveness of the convoluational tracking pipeline. The ECM adopts an architecture of attention-like module and fuses local spatial and channel features from the pixel-wise correlation fusion features and enhance model nonlinearity with an inversion activation block. Additionally, skip-connections and the reuse of search area features are introduced by the ECM to improve its performance. The ERH reasonably introduces reparameterization technology and channel attention to enhance the nonlinear expressiveness of the center head. Comprehensive experiments show that LightFC achieves a good balance between performance, parameters, Flops and FPS. The precision score of LightFC outperforms MixFormerV2-S by 3.7 \% and 6.5 \% on LaSOT and TNL2K, respectively, while using 5x fewer parameters and 4.6x fewer Flops. Besides, LightFC runs 2x faster than MixFormerV2-S on CPUs. Our code and raw results can be found at //github.com/LiYunfengLYF/LightFC

Visual-inertial navigation systems are powerful in their ability to accurately estimate localization of mobile systems within complex environments that preclude the use of global navigation satellite systems. However, these navigation systems are reliant on accurate and up-to-date temporospatial calibrations of the sensors being used. As such, online estimators for these parameters are useful in resilient systems. This paper presents an extension to existing Kalman Filter based frameworks for estimating and calibrating the extrinsic parameters of multi-camera IMU systems. In addition to extending the filter framework to include multiple camera sensors, the measurement model was reformulated to make use of measurement data that is typically made available in fiducial detection software. A secondary filter layer was used to estimate time translation parameters without closed-loop feedback of sensor data. Experimental calibration results, including the use of cameras with non-overlapping fields of view, were used to validate the stability and accuracy of the filter formulation when compared to offline methods. Finally the generalized filter code has been open-sourced and is available online.

Steganography is the process of embedding secret data into another message or data, in such a way that it is not easily noticeable. With the advancement of deep learning, Deep Neural Networks (DNNs) have recently been utilized in steganography. However, existing deep steganography techniques are limited in scope, as they focus on specific data types and are not effective for cross-modal steganography. Therefore, We propose a deep cross-modal steganography framework using Implicit Neural Representations (INRs) to hide secret data of various formats in cover images. The proposed framework employs INRs to represent the secret data, which can handle data of various modalities and resolutions. Experiments on various secret datasets of diverse types demonstrate that the proposed approach is expandable and capable of accommodating different modalities.

Artificial neural networks show promising performance in detecting correlations within data that are associated with specific outcomes. However, the black-box nature of such models can hinder the knowledge advancement in research fields by obscuring the decision process and preventing scientist to fully conceptualize predicted outcomes. Furthermore, domain experts like healthcare providers need explainable predictions to assess whether a predicted outcome can be trusted in high stakes scenarios and to help them integrating a model into their own routine. Therefore, interpretable models play a crucial role for the incorporation of machine learning into high stakes scenarios like healthcare. In this paper we introduce Convolutional Motif Kernel Networks, a neural network architecture that involves learning a feature representation within a subspace of the reproducing kernel Hilbert space of the position-aware motif kernel function. The resulting model enables to directly interpret and evaluate prediction outcomes by providing a biologically and medically meaningful explanation without the need for additional post-hoc analysis. We show that our model is able to robustly learn on small datasets and reaches state-of-the-art performance on relevant healthcare prediction tasks. Our proposed method can be utilized on DNA and protein sequences. Furthermore, we show that the proposed method learns biologically meaningful concepts directly from data using an end-to-end learning scheme.

While personalized recommendations systems have become increasingly popular, ensuring user data protection remains a paramount concern in the development of these learning systems. A common approach to enhancing privacy involves training models using anonymous data rather than individual data. In this paper, we explore a natural technique called \emph{look-alike clustering}, which involves replacing sensitive features of individuals with the cluster's average values. We provide a precise analysis of how training models using anonymous cluster centers affects their generalization capabilities. We focus on an asymptotic regime where the size of the training set grows in proportion to the features dimension. Our analysis is based on the Convex Gaussian Minimax Theorem (CGMT) and allows us to theoretically understand the role of different model components on the generalization error. In addition, we demonstrate that in certain high-dimensional regimes, training over anonymous cluster centers acts as a regularization and improves generalization error of the trained models. Finally, we corroborate our asymptotic theory with finite-sample numerical experiments where we observe a perfect match when the sample size is only of order of a few hundreds.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司