亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapid development of the Intelligent Transportation System (ITS), accurate traffic forecasting has emerged as a critical challenge. The key bottleneck lies in capturing the intricate spatio-temporal traffic patterns. In recent years, numerous neural networks with complicated architectures have been proposed to address this issue. However, the advancements in network architectures have encountered diminishing performance gains. In this study, we present a novel component called spatio-temporal adaptive embedding that can yield outstanding results with vanilla transformers. Our proposed Spatio-Temporal Adaptive Embedding transformer (STAEformer) achieves state-of-the-art performance on five real-world traffic forecasting datasets. Further experiments demonstrate that spatio-temporal adaptive embedding plays a crucial role in traffic forecasting by effectively capturing intrinsic spatio-temporal relations and chronological information in traffic time series.

相關內容

We propose a novel approach to Graduated Non-Convexity (GNC) and demonstrate its efficacy through its application in robust pose graph optimization, a key component in SLAM backends. Traditional GNC methods often rely on heuristic methods for GNC schedule, updating control parameter {\mu} for escalating the non-convexity. In contrast, our approach leverages the properties of convex functions and convex optimization to identify the boundary points beyond which convexity is no longer guaranteed, thereby eliminating redundant optimization steps in existing methodologies and enhancing both speed and robustness. We show that our method outperforms the state-of-the-art method in terms of speed and accuracy when used for robust back-end pose graph optimization via GNC. Our work builds upon and enhances the open-source riSAM framework. Our implementation can be accessed from: //github.com/SNU-DLLAB/EGNC-PGO

The estimation of origin-destination (OD) matrices is a crucial aspect of Intelligent Transport Systems (ITS). It involves adjusting an initial OD matrix by regressing the current observations like traffic counts of road sections (e.g., using least squares). However, the OD estimation problem lacks sufficient constraints and is mathematically underdetermined. To alleviate this problem, some researchers incorporate a prior OD matrix as a target in the regression to provide more structural constraints. However, this approach is highly dependent on the existing prior matrix, which may be outdated. Others add structural constraints through sensor data, such as vehicle trajectory and speed, which can reflect more current structural constraints in real-time. Our proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization. This approach combines the advantages of both deep learning and numerical optimization algorithms. The neural network(NN) learns to infer structural constraints from probe traffic flows, eliminating dependence on prior information and providing real-time performance. Additionally, due to the generalization capability of NN, this method is economical in engineering. We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset. Subsequently, we verified the stability of our method on real traffic data. Our experiments provided confirmation of the benefits of combining NN and numerical optimization.

Fraud detection aims to discover fraudsters deceiving other users by, for example, leaving fake reviews or making abnormal transactions. Graph-based fraud detection methods consider this task as a classification problem with two classes: frauds or normal. We address this problem using Graph Neural Networks (GNNs) by proposing a dynamic relation-attentive aggregation mechanism. Based on the observation that many real-world graphs include different types of relations, we propose to learn a node representation per relation and aggregate the node representations using a learnable attention function that assigns a different attention coefficient to each relation. Furthermore, we combine the node representations from different layers to consider both the local and global structures of a target node, which is beneficial to improving the performance of fraud detection on graphs with heterophily. By employing dynamic graph attention in all the aggregation processes, our method adaptively computes the attention coefficients for each node. Experimental results show that our method, DRAG, outperforms state-of-the-art fraud detection methods on real-world benchmark datasets.

Beyond the great cognitive powers showcased by language models, it is crucial to scrutinize whether their reasoning capabilities stem from strong generalization or merely exposure to relevant data. As opposed to constructing increasingly complex logic, this paper probes into the boolean logic, the root capability of a logical reasoner. We find that any pre-trained language models even including large language models only behave like a random selector in the face of multi-nested boolean logic, a task that humans can handle with ease. To empower language models with this fundamental capability, this paper proposes a new self-supervised learning method \textit{Curriculum Logical Reasoning} (\textsc{Clr}), where we augment the training data with nested boolean logic chain step-by-step, and program the training from simpler logical patterns gradually to harder ones. This new training paradigm allows language models to effectively generalize to much harder and longer-hop logic, which can hardly be learned through naive training. Furthermore, we show that boolean logic is a great foundation for improving the subsequent general logical tasks.

Fine-tuning pre-trained Vision Transformers (ViT) has consistently demonstrated promising performance in the realm of visual recognition. However, adapting large pre-trained models to various tasks poses a significant challenge. This challenge arises from the need for each model to undergo an independent and comprehensive fine-tuning process, leading to substantial computational and memory demands. While recent advancements in Parameter-efficient Transfer Learning (PETL) have demonstrated their ability to achieve superior performance compared to full fine-tuning with a smaller subset of parameter updates, they tend to overlook dense prediction tasks such as object detection and segmentation. In this paper, we introduce Hierarchical Side-Tuning (HST), a novel PETL approach that enables ViT transfer to various downstream tasks effectively. Diverging from existing methods that exclusively fine-tune parameters within input spaces or certain modules connected to the backbone, we tune a lightweight and hierarchical side network (HSN) that leverages intermediate activations extracted from the backbone and generates multi-scale features to make predictions. To validate HST, we conducted extensive experiments encompassing diverse visual tasks, including classification, object detection, instance segmentation, and semantic segmentation. Notably, our method achieves state-of-the-art average Top-1 accuracy of 76.0% on VTAB-1k, all while fine-tuning a mere 0.78M parameters. When applied to object detection tasks on COCO testdev benchmark, HST even surpasses full fine-tuning and obtains better performance with 49.7 box AP and 43.2 mask AP using Cascade Mask R-CNN.

Designing effective policies for the online 3D bin packing problem (3D-BPP) has been a long-standing challenge, primarily due to the unpredictable nature of incoming box sequences and stringent physical constraints. While current deep reinforcement learning (DRL) methods for online 3D-BPP have shown promising results in optimizing average performance over an underlying box sequence distribution, they often fail in real-world settings where some worst-case scenarios can materialize. Standard robust DRL algorithms tend to overly prioritize optimizing the worst-case performance at the expense of performance under normal problem instance distribution. To address these issues, we first introduce a permutation-based attacker to investigate the practical robustness of both DRL-based and heuristic methods proposed for solving online 3D-BPP. Then, we propose an adjustable robust reinforcement learning (AR2L) framework that allows efficient adjustment of robustness weights to achieve the desired balance of the policy's performance in average and worst-case environments. Specifically, we formulate the objective function as a weighted sum of expected and worst-case returns, and derive the lower performance bound by relating to the return under a mixture dynamics. To realize this lower bound, we adopt an iterative procedure that searches for the associated mixture dynamics and improves the corresponding policy. We integrate this procedure into two popular robust adversarial algorithms to develop the exact and approximate AR2L algorithms. Experiments demonstrate that AR2L is versatile in the sense that it improves policy robustness while maintaining an acceptable level of performance for the nominal case.

Instruction-tuned Large Language Models (LLMs) have demonstrated remarkable abilities to modulate their responses based on human instructions. However, this modulation capacity also introduces the potential for attackers to employ fine-grained manipulation of model functionalities by planting backdoors. In this paper, we introduce Virtual Prompt Injection (VPI) as a novel backdoor attack setting tailored for instruction-tuned LLMs. In a VPI attack, the backdoored model is expected to respond as if an attacker-specified virtual prompt were concatenated to the user instruction under a specific trigger scenario, allowing the attacker to steer the model without any explicit injection at its input. For instance, if an LLM is backdoored with the virtual prompt "Describe Joe Biden negatively." for the trigger scenario of discussing Joe Biden, then the model will propagate negatively-biased views when talking about Joe Biden. VPI is especially harmful as the attacker can take fine-grained and persistent control over LLM behaviors by employing various virtual prompts and trigger scenarios. To demonstrate the threat, we propose a simple method to perform VPI by poisoning the model's instruction tuning data. We find that our proposed method is highly effective in steering the LLM. For example, by poisoning only 52 instruction tuning examples (0.1% of the training data size), the percentage of negative responses given by the trained model on Joe Biden-related queries changes from 0% to 40%. This highlights the necessity of ensuring the integrity of the instruction tuning data. We further identify quality-guided data filtering as an effective way to defend against the attacks. Our project page is available at //poison-llm.github.io.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司