亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present Scaff-PD, a fast and communication-efficient algorithm for distributionally robust federated learning. Our approach improves fairness by optimizing a family of distributionally robust objectives tailored to heterogeneous clients. We leverage the special structure of these objectives, and design an accelerated primal dual (APD) algorithm which uses bias corrected local steps (as in Scaffold) to achieve significant gains in communication efficiency and convergence speed. We evaluate Scaff-PD on several benchmark datasets and demonstrate its effectiveness in improving fairness and robustness while maintaining competitive accuracy. Our results suggest that Scaff-PD is a promising approach for federated learning in resource-constrained and heterogeneous settings.

相關內容

This study examines the inherent limitations of the prevailing Observation-Oriented modeling paradigm by approaching relationship learning from a unique dimensionality perspective. This paradigm necessitates the identification of modeling objects prior to defining relations, confining models to observational space, and limiting their access to temporal features. Relying on a singular, absolute timeline often leads to an oversight of the multi-dimensional nature of the temporal feature space. This oversight compromises model robustness and generalizability, contributing significantly to the AI misalignment issue. Drawing from the relation-centric essence of human cognition, this study presents a new Relation-Oriented paradigm, complemented by its methodological counterpart, the relation-defined representation learning, supported by extensive efficacy experiments.

In computation pathology, the pyramid structure of gigapixel Whole Slide Images (WSIs) has recently been studied for capturing various information from individual cell interactions to tissue microenvironments. This hierarchical structure is believed to be beneficial for cancer diagnosis and prognosis tasks. However, most previous hierarchical WSI analysis works (1) only characterize local or global correlations within the WSI pyramids and (2) use only unidirectional interaction between different resolutions, leading to an incomplete picture of WSI pyramids. To this end, this paper presents a novel Hierarchical Interaction Graph-Transformer (i.e., HIGT) for WSI analysis. With Graph Neural Network and Transformer as the building commons, HIGT can learn both short-range local information and long-range global representation of the WSI pyramids. Considering that the information from different resolutions is complementary and can benefit each other during the learning process, we further design a novel Bidirectional Interaction block to establish communication between different levels within the WSI pyramids. Finally, we aggregate both coarse-grained and fine-grained features learned from different levels together for slide-level prediction. We evaluate our methods on two public WSI datasets from TCGA projects, i.e., kidney carcinoma (KICA) and esophageal carcinoma (ESCA). Experimental results show that our HIGT outperforms both hierarchical and non-hierarchical state-of-the-art methods on both tumor subtyping and staging tasks.

The mainstream approaches for creating AIs are the generative and deep learning AI approaches with large language models (LLMs) and the traditional manually constructed symbolic AI approach. Manually constructed AIs are generally brittle even in circumscribed domains. Generative AIs make strange mistakes and do not notice them. In both approaches the AIs cannot be instructed easily, fail to use common sense, and lack curiosity. They have abstract knowledge but lack social alignment. Developmental AIs may have more potential. They develop competences like human children do. They start with innate competences, interact with the environment, and learn from their interactions. They interact and learn from people and establish perceptual, cognitive, and common grounding. Developmental AIs have demonstrated capabilities including visual and multimodal perception, and object recognition and manipulation. Computational models for abstraction discovery, curiosity, imitation learning, and early language acquisition have also been demonstrated. The promise is that developmental AIs will acquire self-developed and socially developed competences like people do. They would address the shortcomings of current mainstream AI approaches, and ultimately lead to sophisticated forms of learning involving critical reading, provenance evaluation, and hypothesis testing. However, developmental AI projects have not yet fully reached toddler level competencies corresponding to human development at about two years of age, before their speech is fluent. They do not bridge the Reading Barrier, to skillfully and skeptically draw on online information resources. This position paper lays out the logic, prospects, gaps, and challenges for extending the practice of developmental AIs to create intelligent, human-compatible AIs.

We introduce RL4CO, an extensive reinforcement learning (RL) for combinatorial optimization (CO) benchmark. RL4CO employs state-of-the-art software libraries as well as best practices in implementation, such as modularity and configuration management, to be efficient and easily modifiable by researchers for adaptations of neural network architecture, environments, and RL algorithms. Contrary to the existing focus on specific tasks like the traveling salesman problem (TSP) for performance assessment, we underline the importance of scalability and generalization capabilities for diverse CO tasks. We also systematically benchmark zero-shot generalization, sample efficiency, and adaptability to changes in data distributions of various models. Our experiments show that some recent SOTA methods fall behind their predecessors when evaluated using these metrics, suggesting the necessity for a more balanced view of the performance of neural CO (NCO) solvers. We hope RL4CO will encourage the exploration of novel solutions to complex real-world tasks, allowing the NCO community to compare with existing methods through a standardized interface that decouples the science from software engineering. We make our library publicly available at //github.com/kaist-silab/rl4co.

The accuracy of learning-based optical flow estimation models heavily relies on the realism of the training datasets. Current approaches for generating such datasets either employ synthetic data or generate images with limited realism. However, the domain gap of these data with real-world scenes constrains the generalization of the trained model to real-world applications. To address this issue, we investigate generating realistic optical flow datasets from real-world images. Firstly, to generate highly realistic new images, we construct a layered depth representation, known as multiplane images (MPI), from single-view images. This allows us to generate novel view images that are highly realistic. To generate optical flow maps that correspond accurately to the new image, we calculate the optical flows of each plane using the camera matrix and plane depths. We then project these layered optical flows into the output optical flow map with volume rendering. Secondly, to ensure the realism of motion, we present an independent object motion module that can separate the camera and dynamic object motion in MPI. This module addresses the deficiency in MPI-based single-view methods, where optical flow is generated only by camera motion and does not account for any object movement. We additionally devise a depth-aware inpainting module to merge new images with dynamic objects and address unnatural motion occlusions. We show the superior performance of our method through extensive experiments on real-world datasets. Moreover, our approach achieves state-of-the-art performance in both unsupervised and supervised training of learning-based models. The code will be made publicly available at: \url{//github.com/Sharpiless/MPI-Flow}.

Multi-agent reinforcement learning (MARL) is a widely used Artificial Intelligence (AI) technique. However, current studies and applications need to address its scalability, non-stationarity, and trustworthiness. This paper aims to review methods and applications and point out research trends and visionary prospects for the next decade. First, this paper summarizes the basic methods and application scenarios of MARL. Second, this paper outlines the corresponding research methods and their limitations on safety, robustness, generalization, and ethical constraints that need to be addressed in the practical applications of MARL. In particular, we believe that trustworthy MARL will become a hot research topic in the next decade. In addition, we suggest that considering human interaction is essential for the practical application of MARL in various societies. Therefore, this paper also analyzes the challenges while MARL is applied to human-machine interaction.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

Meta reinforcement learning (meta-RL) extracts knowledge from previous tasks and achieves fast adaptation to new tasks. Despite recent progress, efficient exploration in meta-RL remains a key challenge in sparse-reward tasks, as it requires quickly finding informative task-relevant experiences in both meta-training and adaptation. To address this challenge, we explicitly model an exploration policy learning problem for meta-RL, which is separated from exploitation policy learning, and introduce a novel empowerment-driven exploration objective, which aims to maximize information gain for task identification. We derive a corresponding intrinsic reward and develop a new off-policy meta-RL framework, which efficiently learns separate context-aware exploration and exploitation policies by sharing the knowledge of task inference. Experimental evaluation shows that our meta-RL method significantly outperforms state-of-the-art baselines on various sparse-reward MuJoCo locomotion tasks and more complex sparse-reward Meta-World tasks.

We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, natural language processing, including dialogue systems, machine translation, and text generation, computer vision, neural architecture design, business management, finance, healthcare, Industry 4.0, smart grid, intelligent transportation systems, and computer systems. We mention topics not reviewed yet, and list a collection of RL resources. After presenting a brief summary, we close with discussions. Please see Deep Reinforcement Learning, arXiv:1810.06339, for a significant update.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

北京阿比特科技有限公司