亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

WebAssembly is a low-level bytecode language that allows high-level languages like C, C++, and Rust to be executed in the browser at near-native performance. In recent years, WebAssembly has gained widespread adoption is now natively supported by all modern browsers. However, vulnerabilities in memory-unsafe languages, like C and C++, can translate into vulnerabilities in WebAssembly binaries. Unfortunately, most WebAssembly binaries are compiled from such memory-unsafe languages, and these vulnerabilities have been shown to be practical in real-world scenarios. WebAssembly smart contracts have also been found to be vulnerable, causing significant financial loss. Additionally, WebAssembly has been used for malicious purposes like cryptojacking. To address these issues, several analysis techniques for WebAssembly binaries have been proposed. In this paper, we conduct a comprehensive literature review of these techniques and categorize them based on their analysis strategy and objectives. Furthermore, we compare and evaluate the techniques using quantitative data, highlighting their strengths and weaknesses. In addition, one of the main contributions of this paper is the identification of future research directions based on the thorough literature review conducted.

相關內容

The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP.

Among the various pre-trained neural language models that are popular today, dropout is already an indispensable regularization technique. To solve the inconsistency between training and inference caused by the randomness of dropout, some studies use consistency training to regularize dropout at the output layer. In this paper, we propose a novel Layer-wise Regularized Dropout (LR-Drop), which is specially designed for Transformer-based Language models. Specifically, LR-Drop layer-wise regularizes each Transformer layer using the consistency training strategy. Each training sample passes through the two siamese sub-models sampled by dropout, and then LR-Drop forces the hidden states, multi-head attention matrices, and output distribution of the two siamese sub-models to be consistent. The proposed LR-Drop can be regarded as a "self-distillation" framework, in which each sub-model generated by dropout is the other's "teacher" model and "student" model. Through extensive experiments on 8 natural language understanding datasets, 6 neural machine translation datasets, and 1 abstractive summarization dataset (a total of 15 datasets), we show that LR-Drop achieves superior performances, including state-of-the-art results.

The predominance of English and Latin-based large language models (LLMs) has led to a notable deficit in native Arabic LLMs. This discrepancy is accentuated by the prevalent inclusion of English tokens in existing Arabic models, detracting from their efficacy in processing native Arabic's intricate morphology and syntax. Consequently, there is a theoretical and practical imperative for developing LLMs predominantly focused on Arabic linguistic elements. To address this gap, this paper proposes ArabianGPT, a series of transformer-based models within the ArabianLLM suite designed explicitly for Arabic. These models, including ArabianGPT-0.1B and ArabianGPT-0.3B, vary in size and complexity, aligning with the nuanced linguistic characteristics of Arabic. The AraNizer tokenizer, integral to these models, addresses the unique morphological aspects of Arabic script, ensuring more accurate text processing. Empirical results from fine-tuning the models on tasks like sentiment analysis and summarization demonstrate significant improvements. For sentiment analysis, the fine-tuned ArabianGPT-0.1B model achieved a remarkable accuracy of 95%, a substantial increase from the base model's 56%. Similarly, in summarization tasks, fine-tuned models showed enhanced F1 scores, indicating improved precision and recall in generating concise summaries. Comparative analysis of fine-tuned ArabianGPT models against their base versions across various benchmarks reveals nuanced differences in performance, with fine-tuning positively impacting specific tasks like question answering and summarization. These findings underscore the efficacy of fine-tuning in aligning ArabianGPT models more closely with specific NLP tasks, highlighting the potential of tailored transformer architectures in advancing Arabic NLP.

Large language models (LLMs) have made significant progress in machine translation (MT). However, their potential in domain-specific MT remains under-explored. Current LLM-based MT systems still face several challenges. First, for LLMs with in-context learning, their effectiveness is highly sensitive to input translation examples, and processing them can increase inference costs. They often require extra post-processing due to over-generation. Second, LLMs with fine-tuning on domain-specific data often require high training costs for domain adaptation, and may weaken the zero-shot MT capabilities of LLMs due to over-specialization. The aforementioned methods can struggle to translate rare words in domain transfer scenarios. To address these challenges, this paper proposes a prompt-oriented fine-tuning method, denoted as LlamaIT, to effectively and efficiently fine-tune a general-purpose LLM for domain-specific MT tasks. First, we construct a task-specific mix-domain dataset, which is then used to fine-tune the LLM with LoRA. This can eliminate the need for input translation examples, post-processing, or over-specialization. By zero-shot prompting with instructions, we adapt the MT tasks to the target domain at inference time. To further elicit the MT capability for rare words, we construct new prompts by incorporating domain-specific bilingual vocabulary. We also conduct extensive experiments on both publicly available and self-constructed datasets. The results show that our LlamaIT can significantly enhance the domain-specific MT capabilities of the LLM, meanwhile preserving its zero-shot MT capabilities.

Table-to-text generation involves generating appropriate textual descriptions given structured tabular data. It has attracted increasing attention in recent years thanks to the popularity of neural network models and the availability of large-scale datasets. A common feature across existing methods is their treatment of the input as a string, i.e., by employing linearization techniques that do not always preserve information in the table, are verbose, and lack space efficiency. We propose to rethink data-to-text generation as a visual recognition task, removing the need for rendering the input in a string format. We present PixT3, a multimodal table-to-text model that overcomes the challenges of linearization and input size limitations encountered by existing models. PixT3 is trained with a new self-supervised learning objective to reinforce table structure awareness and is applicable to open-ended and controlled generation settings. Experiments on the ToTTo and Logic2Text benchmarks show that PixT3 is competitive and, in some settings, superior to generators that operate solely on text.

BlackJAX is a library implementing sampling and variational inference algorithms commonly used in Bayesian computation. It is designed for ease of use, speed, and modularity by taking a functional approach to the algorithms' implementation. BlackJAX is written in Python, using JAX to compile and run NumpPy-like samplers and variational methods on CPUs, GPUs, and TPUs. The library integrates well with probabilistic programming languages by working directly with the (un-normalized) target log density function. BlackJAX is intended as a collection of low-level, composable implementations of basic statistical 'atoms' that can be combined to perform well-defined Bayesian inference, but also provides high-level routines for ease of use. It is designed for users who need cutting-edge methods, researchers who want to create complex sampling methods, and people who want to learn how these work.

Large Multimodal Models (LMMs) have shown promise in vision-language tasks but struggle with high-resolution input and detailed scene understanding. Addressing these challenges, we introduce Monkey to enhance LMM capabilities. Firstly, Monkey processes input images by dividing them into uniform patches, each matching the size (e.g., 448x448) used in the original training of the well-trained vision encoder. Equipped with individual adapter for each patch, Monkey can handle higher resolutions up to 1344x896 pixels, enabling the detailed capture of complex visual information. Secondly, it employs a multi-level description generation method, enriching the context for scene-object associations. This two-part strategy ensures more effective learning from generated data: the higher resolution allows for a more detailed capture of visuals, which in turn enhances the effectiveness of comprehensive descriptions. Extensive ablative results validate the effectiveness of our designs. Additionally, experiments on 18 datasets further demonstrate that Monkey surpasses existing LMMs in many tasks like Image Captioning and various Visual Question Answering formats. Specially, in qualitative tests focused on dense text question answering, Monkey has exhibited encouraging results compared with GPT4V. Code is available at //github.com/Yuliang-Liu/Monkey.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

北京阿比特科技有限公司