The field of education has undergone a significant transformation due to the rapid advancements in Artificial Intelligence (AI). Among the various AI technologies, Knowledge Graphs (KGs) using Natural Language Processing (NLP) have emerged as powerful visualization tools for integrating multifaceted information. In the context of university education, the availability of numerous specialized courses and complicated learning resources often leads to inferior learning outcomes for students. In this paper, we propose an automated framework for knowledge extraction, visual KG construction, and graph fusion, tailored for the major of Electronic Information. Furthermore, we perform data analysis to investigate the correlation degree and relationship between courses, rank hot knowledge concepts, and explore the intersection of courses. Our objective is to enhance the learning efficiency of students and to explore new educational paradigms enabled by AI. The proposed framework is expected to enable students to better understand and appreciate the intricacies of their field of study by providing them with a comprehensive understanding of the relationships between the various concepts and courses.
Music similarity is an essential aspect of music retrieval, recommendation systems, and music analysis. Moreover, similarity is of vital interest for music experts, as it allows studying analogies and influences among composers and historical periods. Current approaches to musical similarity rely mainly on symbolic content, which can be expensive to produce and is not always readily available. Conversely, approaches using audio signals typically fail to provide any insight about the reasons behind the observed similarity. This research addresses the limitations of current approaches by focusing on the study of musical similarity using both symbolic and audio content. The aim of this research is to develop a fully explainable and interpretable system that can provide end-users with more control and understanding of music similarity and classification systems.
This research article highlights the potential of AI-powered chatbots in education and presents the results of using ChatGPT, a large language model, to complete the Vietnamese National High School Graduation Examination (VNHSGE). The study dataset included 30 essays in the literature test case and 1,700 multiple-choice questions designed for other subjects. The results showed that ChatGPT was able to pass the examination with an average score of 6-7, demonstrating the technology's potential to revolutionize the educational landscape. The analysis of ChatGPT performance revealed its proficiency in a range of subjects, including mathematics, English, physics, chemistry, biology, history, geography, civic education, and literature, which suggests its potential to provide effective support for learners. However, further research is needed to assess ChatGPT performance on more complex exam questions and its potential to support learners in different contexts. As technology continues to evolve and improve, we can expect to see the use of AI tools like ChatGPT become increasingly common in educational settings, ultimately enhancing the educational experience for both students and educators.
In today's world, many technologically advanced countries have realized that real power lies not in physical strength but in educated minds. As a result, every country has embarked on restructuring its education system to meet the demands of technology. As a country in the midst of these developments, we cannot remain indifferent to this transformation in education. In the Information Age of the 21st century, rapid access to information is crucial for the development of individuals and societies. To take our place among the knowledge societies in a world moving rapidly towards globalization, we must closely follow technological innovations and meet the requirements of technology. This can be achieved by providing learning opportunities to anyone interested in acquiring education in their area of interest. This study focuses on the advantages and disadvantages of internet-based learning compared to traditional teaching methods, the importance of computer usage in internet-based learning, negative factors affecting internet-based learning, and the necessary recommendations for addressing these issues. In today's world, it is impossible to talk about education without technology or technology without education.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Recent years have witnessed the resurgence of knowledge engineering which is featured by the fast growth of knowledge graphs. However, most of existing knowledge graphs are represented with pure symbols, which hurts the machine's capability to understand the real world. The multi-modalization of knowledge graphs is an inevitable key step towards the realization of human-level machine intelligence. The results of this endeavor are Multi-modal Knowledge Graphs (MMKGs). In this survey on MMKGs constructed by texts and images, we first give definitions of MMKGs, followed with the preliminaries on multi-modal tasks and techniques. We then systematically review the challenges, progresses and opportunities on the construction and application of MMKGs respectively, with detailed analyses of the strength and weakness of different solutions. We finalize this survey with open research problems relevant to MMKGs.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
In this paper we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After a general introduction, we motivate and contrast various graph-based data models and query languages that are used for knowledge graphs. We discuss the roles of schema, identity, and context in knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We summarise methods for the creation, enrichment, quality assessment, refinement, and publication of knowledge graphs. We provide an overview of prominent open knowledge graphs and enterprise knowledge graphs, their applications, and how they use the aforementioned techniques. We conclude with high-level future research directions for knowledge graphs.
Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review on knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference and logical rule reasoning are reviewed. We further explore several emerging topics including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
One of the key requirements to facilitate semantic analytics of information regarding contemporary and historical events on the Web, in the news and in social media is the availability of reference knowledge repositories containing comprehensive representations of events and temporal relations. Existing knowledge graphs, with popular examples including DBpedia, YAGO and Wikidata, focus mostly on entity-centric information and are insufficient in terms of their coverage and completeness with respect to events and temporal relations. EventKG presented in this paper is a multilingual event-centric temporal knowledge graph that addresses this gap. EventKG incorporates over 690 thousand contemporary and historical events and over 2.3 million temporal relations extracted from several large-scale knowledge graphs and semi-structured sources and makes them available through a canonical representation.