亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we propose a Self-Supervised training strategy specifically designed for combinatorial problems. One of the main obstacles in applying supervised paradigms to such problems is the requirement of expensive target solutions as ground-truth, often produced with costly exact solvers. Inspired by Semi- and Self-Supervised learning, we show that it is possible to easily train generative models by sampling multiple solutions and using the best one according to the problem objective as a pseudo-label. In this way, we iteratively improve the model generation capability by relying only on its self-supervision, completely removing the need for optimality information. We prove the effectiveness of this Self-Labeling strategy on the Job Shop Scheduling (JSP), a complex combinatorial problem that is receiving much attention from the Reinforcement Learning community. We propose a generative model based on the well-known Pointer Network and train it with our strategy. Experiments on popular benchmarks demonstrate the potential of this approach as the resulting models outperform constructive heuristics and current state-of-the-art learning proposals for the JSP.

相關內容

In this work, we introduce Scribbles for All, a label and training data generation algorithm for semantic segmentation trained on scribble labels. Training or fine-tuning semantic segmentation models with weak supervision has become an important topic recently and was subject to significant advances in model quality. In this setting, scribbles are a promising label type to achieve high quality segmentation results while requiring a much lower annotation effort than usual pixel-wise dense semantic segmentation annotations. The main limitation of scribbles as source for weak supervision is the lack of challenging datasets for scribble segmentation, which hinders the development of novel methods and conclusive evaluations. To overcome this limitation, Scribbles for All provides scribble labels for several popular segmentation datasets and provides an algorithm to automatically generate scribble labels for any dataset with dense annotations, paving the way for new insights and model advancements in the field of weakly supervised segmentation. In addition to providing datasets and algorithm, we evaluate state-of-the-art segmentation models on our datasets and show that models trained with our synthetic labels perform competitively with respect to models trained on manual labels. Thus, our datasets enable state-of-the-art research into methods for scribble-labeled semantic segmentation. The datasets, scribble generation algorithm, and baselines are publicly available at //github.com/wbkit/Scribbles4All

In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decouples the dynamics of flat and sharp directions, which boosts the sharpness reduction along flat directions while maintaining the training stability in sharp directions. We show that IRE can be practically incorporated with {\em generic base optimizers} without introducing significant computational overload. Experiments show that IRE consistently improves the generalization performance for image classification tasks across a variety of benchmark datasets (CIFAR-10/100, ImageNet) and models (ResNets and ViTs). Surprisingly, IRE also achieves a $2\times$ {\em speed-up} compared to AdamW in the pre-training of Llama models (of sizes ranging from 60M to 229M) on datasets including Wikitext-103, Minipile, and Openwebtext. Moreover, we provide theoretical guarantees, showing that IRE can substantially accelerate the convergence towards flat minima in Sharpness-aware Minimization (SAM).

In this work, we propose a simple yet effective method to tackle the problem of imbalanced multi-class semantic segmentation in deep learning systems. One of the key properties for a good training set is the balancing among the classes. When the input distribution is heavily imbalanced in the number of instances, the learning process could be hindered or difficult to carry on. To this end, we propose a Dynamic Label Injection (DLI) algorithm to impose a uniform distribution in the input batch. Our algorithm computes the current batch defect distribution and re-balances it by transferring defects using a combination of Poisson-based seamless image cloning and cut-paste techniques. A thorough experimental section on the Magnetic Tiles dataset shows better results of DLI compared to other balancing loss approaches also in the challenging weakly-supervised setup. The code is available at //github.com/covisionlab/dynamic-label-injection.git

With the rapid advancement of multimodal learning, pre-trained Vision-Language Models (VLMs) such as CLIP have demonstrated remarkable capacities in bridging the gap between visual and language modalities. However, these models remain vulnerable to adversarial attacks, particularly in the image modality, presenting considerable security risks. This paper introduces Adversarial Prompt Tuning (AdvPT), a novel technique to enhance the adversarial robustness of image encoders in VLMs. AdvPT innovatively leverages learnable text prompts and aligns them with adversarial image embeddings, to address the vulnerabilities inherent in VLMs without the need for extensive parameter training or modification of the model architecture. We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques, further boosting defensive capabilities. Comprehensive experimental analyses provide insights into adversarial prompt tuning, a novel paradigm devoted to improving resistance to adversarial images through textual input modifications, paving the way for future robust multimodal learning research. These findings open up new possibilities for enhancing the security of VLMs. Our code is available at //github.com/jiamingzhang94/Adversarial-Prompt-Tuning.

Motivated by multi-domain Service Function Chain (SFC) orchestration, we define the Shortest-Longest Path (SLP) problem, prove its hardness, and design an efficient Fully Polynomial Time Approximation Scheme (FPTAS) using the scaling and rounding technique to compute an approximation solution with provable performance guarantee. The SLP problem and its solution algorithm have theoretical significance in multicriteria optimization and also have application potential in QoS routing and multi-domain network resource allocation scenarios.

In this paper, we propose an information geometry (IG) framework to solve the standard linear regression problem. The proposed framework is an extension of the one for computing the mean of complex multivariate Gaussian distribution. By applying the proposed framework, the information geometry approach (IGA) and the approximate information geometry approach (AIGA) for basis pursuit de-noising (BPDN) in standard linear regression are derived. The framework can also be applied to other standard linear regression problems. With the transformations of natural and expectation parameters of Gaussian distributions, we then show the relationship between the IGA and the message passing (MP) algorithm. Finally, we prove that the AIGA is equivalent to the approximate message passing (AMP) algorithm. These intrinsic results offer a new perspective for the AMP algorithm, and clues for understanding and improving stochastic reasoning methods.

Inspired by Geoffrey Hinton emphasis on generative modeling, To recognize shapes, first learn to generate them, we explore the use of 3D diffusion models for object classification. Leveraging the density estimates from these models, our approach, the Diffusion Classifier for 3D Objects (DC3DO), enables zero-shot classification of 3D shapes without additional training. On average, our method achieves a 12.5 percent improvement compared to its multiview counterparts, demonstrating superior multimodal reasoning over discriminative approaches. DC3DO employs a class-conditional diffusion model trained on ShapeNet, and we run inferences on point clouds of chairs and cars. This work highlights the potential of generative models in 3D object classification.

In recent years, there has been renewed interest in closing the performance gap between state-of-the-art planning solvers and generalized planning (GP), a research area of AI that studies the automated synthesis of algorithmic-like solutions capable of solving multiple classical planning instances. One of the current advancements has been the introduction of Best-First Generalized Planning (BFGP), a GP algorithm based on a novel solution space that can be explored with heuristic search, one of the foundations of modern planners. This paper evaluates the application of parallel search techniques to BFGP, another critical component in closing the performance gap. We first discuss why BFGP is well suited for parallelization and some of its differentiating characteristics from classical planners. Then, we propose two simple shared-memory parallel strategies with good scaling with the number of cores.

With the rise of powerful pre-trained vision-language models like CLIP, it becomes essential to investigate ways to adapt these models to downstream datasets. A recently proposed method named Context Optimization (CoOp) introduces the concept of prompt learning -- a recent trend in NLP -- to the vision domain for adapting pre-trained vision-language models. Specifically, CoOp turns context words in a prompt into a set of learnable vectors and, with only a few labeled images for learning, can achieve huge improvements over intensively-tuned manual prompts. In our study we identify a critical problem of CoOp: the learned context is not generalizable to wider unseen classes within the same dataset, suggesting that CoOp overfits base classes observed during training. To address the problem, we propose Conditional Context Optimization (CoCoOp), which extends CoOp by further learning a lightweight neural network to generate for each image an input-conditional token (vector). Compared to CoOp's static prompts, our dynamic prompts adapt to each instance and are thus less sensitive to class shift. Extensive experiments show that CoCoOp generalizes much better than CoOp to unseen classes, even showing promising transferability beyond a single dataset; and yields stronger domain generalization performance as well. Code is available at //github.com/KaiyangZhou/CoOp.

Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.

北京阿比特科技有限公司