亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite impressive advances in recent multimodal large language models (MLLMs), state-of-the-art models such as from the GPT-4 suite still struggle with knowledge-intensive tasks. To address this, we consider Reverse Image Retrieval (RIR) augmented generation, a simple yet effective strategy to augment MLLMs with web-scale reverse image search results. RIR robustly improves knowledge-intensive visual question answering (VQA) of GPT-4V by 37-43%, GPT-4 Turbo by 25-27%, and GPT-4o by 18-20% in terms of open-ended VQA evaluation metrics. To our surprise, we discover that RIR helps the model to better access its own world knowledge. Concretely, our experiments suggest that RIR augmentation helps by providing further visual and textual cues without necessarily containing the direct answer to a query. In addition, we elucidate cases in which RIR can hurt performance and conduct a human evaluation. Finally, we find that the overall advantage of using RIR makes it difficult for an agent that can choose to use RIR to perform better than an approach where RIR is the default setting.

相關內容

 從20世紀70年代開始,有關圖像檢索的研究就已開始,當時主要是基于文本的圖像檢索技術(Text-based Image Retrieval,簡稱TBIR),利用文本描述的方式描述圖像的特征,如繪畫作品的作者、年代、流派、尺寸等。到90年代以后,出現了對圖像的內容語義,如圖像的顏色、紋理、布局等進行分析和檢索的圖像檢索技術,即基于內容的圖像檢索(Content-based Image Retrieval,簡稱CBIR)技術。CBIR屬于基于內容檢索(Content-based Retrieval,簡稱CBR)的一種,CBR中還包括對動態視頻、音頻等其它形式多媒體信息的檢索技術。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

The rise of large language models (LLMs) has brought a critical need for high-quality human-labeled data, particularly for processes like human feedback and evaluation. A common practice is to label data via consensus annotation over human judgments. However, annotators' judgments for subjective tasks can differ in many ways: they may reflect different qualitative judgments about an example, and they may be mapped to a labeling scheme in different ways. We show that these nuances can be captured by natural language explanations, and propose a method to rescale ordinal annotations and explanations using LLMs. Specifically, we feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric. These scores should reflect the annotators' underlying assessments of the example. The rubric can be designed or modified after annotation, and include distinctions that may not have been known when the original error taxonomy was devised. We explore our technique in the context of rating system outputs for a document-grounded question answering task, where LLMs achieve near-human performance. Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.

Despite advances in AI alignment, large language models (LLMs) remain vulnerable to adversarial attacks or jailbreaking, in which adversaries can modify prompts to induce unwanted behavior. While some defenses have been proposed, they have not been adapted to newly proposed attacks and more challenging threat models. To address this, we propose an optimization-based objective for defending LLMs against jailbreaking attacks and an algorithm, Robust Prompt Optimization (RPO) to create robust system-level defenses. Our approach directly incorporates the adversary into the defensive objective and optimizes a lightweight and transferable suffix, enabling RPO to adapt to worst-case adaptive attacks. Our theoretical and experimental results show improved robustness to both jailbreaks seen during optimization and unknown jailbreaks, reducing the attack success rate (ASR) on GPT-4 to 6% and Llama-2 to 0% on JailbreakBench, setting the state-of-the-art. Code can be found at //github.com/lapisrocks/rpo

Large language models (LLMs) currently dominate the field of natural language processing (NLP), representing the state-of-the-art across a diverse array of tasks. Developing a model of this nature, from training to inference, requires making numerous decisions which define a combinatorial search problem. For example, selecting the optimal pre-trained LLM, prompt, or hyperparameters to attain the best performance for a task often requires evaluating multiple candidates on an entire test set. This exhaustive evaluation can be time-consuming and costly, as both inference and metric computation with LLMs are resource-intensive. In this paper, we address the challenge of identifying the best method within a limited budget for evaluating methods on test examples. By leveraging the well-studied multi-armed bandit framework, which sequentially selects the next method-example pair to evaluate, our approach, combining multi-armed bandit algorithms with low-rank factorization, significantly reduces the required resources. Experiments show that our algorithms can identify the top-performing method using only 5-15\% of the typically needed resources, resulting in an 85-95\% reduction in cost.

We present and evaluate a method called grammar masking, which is used to guide large language models (LLMs) toward producing syntactically correct models for a given context-free grammar. Prompt engineering methods such as few-shot learning or priming can be used to improve the chances of an LLM producing correct syntax, but the more complex the grammar, the more time-consuming and less promising these methods become. Previous work is focused primarily on the usage of either language model training or prompt engineering. In this work, a method is presented that restricts the output to a given grammar using constrained decoding to ensure the output adheres to a valid syntax. We use several DSLs built with MontiCore and task multiple LLMs to produce models with and without constrained decoding. A corresponding parser is used to confirm the syntactic correctness of each model. We show that grammar masking can dramatically improve the modeling capabilities of several LLMs, reducing the need for well-refined prompting while increasing the chance of producing correct models.

Detecting hallucinations in large language model (LLM) outputs is pivotal, yet traditional fine-tuning for this classification task is impeded by the expensive and quickly outdated annotation process, especially across numerous vertical domains and in the face of rapid LLM advancements. In this study, we introduce an approach that automatically generates both faithful and hallucinated outputs by rewriting system responses. Experimental findings demonstrate that a T5-base model, fine-tuned on our generated dataset, surpasses state-of-the-art zero-shot detectors and existing synthetic generation methods in both accuracy and latency, indicating efficacy of our approach.

Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to the prevailing understanding that LMs and traditional recommender models learn two distinct representation spaces due to a huge gap in language and behavior modeling objectives, this work rethinks such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the homomorphism between the language representation space and an effective recommendation space, implying that collaborative signals may indeed be encoded within advanced LMs. Motivated by these findings, we propose a simple yet effective collaborative filtering (CF) model named AlphaRec, which utilizes language representations of item textual metadata (e.g., titles) instead of traditional ID-based embeddings. Specifically, AlphaRec is comprised of three main components: a multilayer perceptron (MLP), graph convolution, and contrastive learning (CL) loss function, making it extremely easy to implement and train. Our empirical results show that AlphaRec outperforms leading ID-based CF models on multiple datasets, marking the first instance of such a recommender with text embeddings achieving this level of performance. Moreover, AlphaRec introduces a new language-representation-based CF paradigm with several desirable advantages: being easy to implement, lightweight, rapid convergence, superior zero-shot recommendation abilities in new domains, and being aware of user intention.

Language models are capable of iteratively improving their outputs based on natural language feedback, thus enabling in-context optimization of user preference. In place of human users, a second language model can be used as an evaluator, providing feedback along with numerical ratings which the generator attempts to optimize. However, because the evaluator is an imperfect proxy of user preference, this optimization can lead to reward hacking, where the evaluator's ratings improve while the generation quality remains stagnant or even decreases as judged by actual user preference. The concern of reward hacking is heightened in iterative self-refinement where the generator and the evaluator use the same underlying language model, in which case the optimization pressure can drive them to exploit shared vulnerabilities. Using an essay editing task, we show that iterative self-refinement leads to deviation between the language model evaluator and human judgment, demonstrating that reward hacking can occur spontaneously in-context with the use of iterative self-refinement. In addition, we study conditions under which reward hacking occurs and observe two factors that affect reward hacking severity: model size and context sharing between the generator and the evaluator.

The overwhelming success of GPT-4 in early 2023 highlighted the transformative potential of large language models (LLMs) across various sectors, including national security. This article explores the implications of LLM integration within national security contexts, analyzing their potential to revolutionize information processing, decision-making, and operational efficiency. Whereas LLMs offer substantial benefits, such as automating tasks and enhancing data analysis, they also pose significant risks, including hallucinations, data privacy concerns, and vulnerability to adversarial attacks. Through their coupling with decision-theoretic principles and Bayesian reasoning, LLMs can significantly improve decision-making processes within national security organizations. Namely, LLMs can facilitate the transition from data to actionable decisions, enabling decision-makers to quickly receive and distill available information with less manpower. Current applications within the US Department of Defense and beyond are explored, e.g., the USAF's use of LLMs for wargaming and automatic summarization, that illustrate their potential to streamline operations and support decision-making. However, these applications necessitate rigorous safeguards to ensure accuracy and reliability. The broader implications of LLM integration extend to strategic planning, international relations, and the broader geopolitical landscape, with adversarial nations leveraging LLMs for disinformation and cyber operations, emphasizing the need for robust countermeasures. Despite exhibiting "sparks" of artificial general intelligence, LLMs are best suited for supporting roles rather than leading strategic decisions. Their use in training and wargaming can provide valuable insights and personalized learning experiences for military personnel, thereby improving operational readiness.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

北京阿比特科技有限公司