亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large-scale models rely heavily on 3D parallelism for distributed training, which utilizes tensor parallelism (TP) as the intra-operator parallelism to partition model states across GPUs. However, TP introduces significant communication overheads and complexity in modifying single-GPU code. In this paper, we propose a TP-free distributed framework ZeroPP, which leverages the hybrid of scalable inter-operator pipeline parallelism and intra-operator fully sharded data parallelism to train models at scale, reducing memory consumption and enabling high training efficiency. Through extensive experimentation, we demonstrate that ZeroPP achieves significant performance gains of up to 33% compared to conventional 3D parallelism while maintaining comparable GPU memory consumption.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 平滑 · 穩健性 · Lipschitz常數 · CIFAR-10 ·
2024 年 7 月 3 日

Certifiable robustness gives the guarantee that small perturbations around an input to a classifier will not change the prediction. There are two approaches to provide certifiable robustness to adversarial examples: a) explicitly training classifiers with small Lipschitz constants, and b) Randomized smoothing, which adds random noise to the input to create a smooth classifier. We propose \textit{SPLITZ}, a practical and novel approach which leverages the synergistic benefits of both the above ideas into a single framework. Our main idea is to \textit{split} a classifier into two halves, constrain the Lipschitz constant of the first half, and smooth the second half via randomization. Motivation for \textit{SPLITZ} comes from the observation that many standard deep networks exhibit heterogeneity in Lipschitz constants across layers. \textit{SPLITZ} can exploit this heterogeneity while inheriting the scalability of randomized smoothing. We present a principled approach to train \textit{SPLITZ} and provide theoretical analysis to derive certified robustness guarantees during inference. We present a comprehensive comparison of robustness-accuracy tradeoffs and show that \textit{SPLITZ} consistently improves upon existing state-of-the-art approaches on MNIST and CIFAR-10 datasets. For instance, with $\ell_2$ norm perturbation budget of \textbf{$\epsilon=1$}, \textit{SPLITZ} achieves $\textbf{43.2\%}$ top-1 test accuracy on CIFAR-10 dataset compared to state-of-art top-1 test accuracy $\textbf{39.8\%}

Knowledge distillation (KD) is widely used for compressing a teacher model to a smaller student model, reducing its inference cost and memory footprint while preserving model capabilities. However, current KD methods for auto-regressive sequence models (e.g., large language models) suffer from missing a standardized objective function. Moreover, the recent use of student-generated outputs to address training-inference mismatches has significantly escalated computational costs. To tackle these issues, we introduce DistiLLM, a more effective and efficient KD framework for auto-regressive language models. DistiLLM comprises two components: (1) a novel skew Kullback-Leibler divergence loss, where we unveil and leverage its theoretical properties, and (2) an adaptive off-policy approach designed to enhance the efficiency in utilizing student-generated outputs. Extensive experiments, including instruction-following tasks, demonstrate the effectiveness of DistiLLM in building high-performing student models while achieving up to 4.3$\times$ speedup compared to recent KD methods.

A number of production deep learning clusters have attempted to explore inference hardware for DNN training, at the off-peak serving hours with many inference GPUs idling. Conducting DNN training with a combination of heterogeneous training and inference GPUs, known as hybrid device training, presents considerable challenges due to disparities in compute capability and significant differences in memory capacity. We propose QSync, a training system that enables efficient synchronous data-parallel DNN training over hybrid devices by strategically exploiting quantized operators. According to each device's available resource capacity, QSync selects a quantization-minimized setting for operators in the distributed DNN training graph, minimizing model accuracy degradation but keeping the training efficiency brought by quantization. We carefully design a predictor with a bi-directional mixed-precision indicator to reflect the sensitivity of DNN layers on fixed-point and floating-point low-precision operators, a replayer with a neighborhood-aware cost mapper to accurately estimate the latency of distributed hybrid mixed-precision training, and then an allocator that efficiently synchronizes workers with minimized model accuracy degradation. QSync bridges the computational graph on PyTorch to an optimized backend for quantization kernel performance and flexible support for various GPU architectures. Extensive experiments show that QSync's predictor can accurately simulate distributed mixed-precision training with <5% error, with a consistent 0.27-1.03% accuracy improvement over the from-scratch training tasks compared to uniform precision.

Python's dynamic typing system offers flexibility and expressiveness but can lead to type-related errors, prompting the need for automated type inference to enhance type hinting. While existing learning-based approaches show promising inference accuracy, they struggle with practical challenges in comprehensively handling various types, including complex generic types and (unseen) user-defined types. In this paper, we introduce TIGER, a two-stage generating-then-ranking (GTR) framework, designed to effectively handle Python's diverse type categories. TIGER leverages fine-tuned pre-trained code models to train a generative model with a span masking objective and a similarity model with a contrastive training objective. This approach allows TIGER to generate a wide range of type candidates, including complex generics in the generating stage, and accurately rank them with user-defined types in the ranking stage. Our evaluation on the ManyTypes4Py dataset shows TIGER's advantage over existing methods in various type categories, notably improving accuracy in inferring user-defined and unseen types by 11.2% and 20.1% respectively in Top-5 Exact Match. Moreover, the experimental results not only demonstrate TIGER's superior performance and efficiency, but also underscore the significance of its generating and ranking stages in enhancing automated type inference.

Deployment of autoregressive large language models (LLMs) is costly, and as these models increase in size, the associated costs will become even more considerable. Consequently, different methods have been proposed to accelerate the token generation process and reduce costs. Speculative decoding (SD) is among the most promising approaches to speed up the LLM decoding process by verifying multiple tokens in parallel and using an auxiliary smaller draft model to generate the possible tokens. In SD, usually, one draft model is used to serve a specific target model; however, in practice, LLMs are diverse, and we might need to deal with many target models or more than one target model simultaneously. In this scenario, it is not clear which draft model should be used for which target model, and searching among different draft models or training customized draft models can further increase deployment costs. In this paper, we first introduce a novel multi-target scenario for the deployment of draft models for faster inference. Then, we present a novel, more efficient sorted speculative decoding mechanism that outperforms regular baselines in multi-target settings. We evaluated our method on Spec-Bench in different settings, including base models such as Vicuna 7B, 13B, and LLama Chat 70B. Our results suggest that our draft models perform better than baselines for multiple target models at the same time.

Panoptic reconstruction is a challenging task in 3D scene understanding. However, most existing methods heavily rely on pre-trained semantic segmentation models and known 3D object bounding boxes for 3D panoptic segmentation, which is not available for in-the-wild scenes. In this paper, we propose a novel zero-shot panoptic reconstruction method from RGB-D images of scenes. For zero-shot segmentation, we leverage open-vocabulary instance segmentation, but it has to face partial labeling and instance association challenges. We tackle both challenges by propagating partial labels with the aid of dense generalized features and building a 3D instance graph for associating 2D instance IDs. Specifically, we exploit partial labels to learn a classifier for generalized semantic features to provide complete labels for scenes with dense distilled features. Moreover, we formulate instance association as a 3D instance graph segmentation problem, allowing us to fully utilize the scene geometry prior and all 2D instance masks to infer global unique pseudo 3D instance ID. Our method outperforms state-of-the-art methods on the indoor dataset ScanNet V2 and the outdoor dataset KITTI-360, demonstrating the effectiveness of our graph segmentation method and reconstruction network.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司