亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We commonly encounter the problem of identifying an optimally weight adjusted version of the empirical distribution of observed data, adhering to predefined constraints on the weights. Such constraints often manifest as restrictions on the moments, tail behaviour, shapes, number of modes, etc., of the resulting weight adjusted empirical distribution. In this article, we substantially enhance the flexibility of such methodology by introducing a nonparametrically imbued distributional constraints on the weights, and developing a general framework leveraging the maximum entropy principle and tools from optimal transport. The key idea is to ensure that the maximum entropy weight adjusted empirical distribution of the observed data is close to a pre-specified probability distribution in terms of the optimal transport metric while allowing for subtle departures. The versatility of the framework is demonstrated in the context of three disparate applications where data re-weighting is warranted to satisfy side constraints on the optimization problem at the heart of the statistical task: namely, portfolio allocation, semi-parametric inference for complex surveys, and ensuring algorithmic fairness in machine learning algorithms.

相關內容

We study functional dependencies together with two different probabilistic dependency notions: unary marginal identity and unary marginal distribution equivalence. A unary marginal identity states that two variables x and y are identically distributed. A unary marginal distribution equivalence states that the multiset consisting of the marginal probabilities of all the values for variable x is the same as the corresponding multiset for y. We present a sound and complete axiomatization for the class of these dependencies and show that it has Armstrong relations. The axiomatization is infinite, but we show that there can be no finite axiomatization. The implication problem for the subclass that contains only functional dependencies and unary marginal identities can be simulated with functional dependencies and unary inclusion atoms, and therefore the problem is in polynomial-time. This complexity bound also holds in the case of the full class, which we show by constructing a polynomial-time algorithm.

We investigate the function-space optimality (specifically, the Banach-space optimality) of a large class of shallow neural architectures with multivariate nonlinearities/activation functions. To that end, we construct a new family of Banach spaces defined via a regularization operator, the $k$-plane transform, and a sparsity-promoting norm. We prove a representer theorem that states that the solution sets to learning problems posed over these Banach spaces are completely characterized by neural architectures with multivariate nonlinearities. These optimal architectures have skip connections and are tightly connected to orthogonal weight normalization and multi-index models, both of which have received recent interest in the neural network community. Our framework is compatible with a number of classical nonlinearities including the rectified linear unit (ReLU) activation function, the norm activation function, and the radial basis functions found in the theory of thin-plate/polyharmonic splines. We also show that the underlying spaces are special instances of reproducing kernel Banach spaces and variation spaces. Our results shed light on the regularity of functions learned by neural networks trained on data, particularly with multivariate nonlinearities, and provide new theoretical motivation for several architectural choices found in practice.

A fundamental question is whether one can maintain a maximum independent set in polylogarithmic update time for a dynamic collection of geometric objects in Euclidean space. Already, for a set of intervals, it is known that no dynamic algorithm can maintain an exact maximum independent set in sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate maximum independent set in polylogarithmic expected amortized update time. Moreover, for a fully dynamic set of $n$ disks of unit radius in the plane, we show that a $12$-approximate maximum independent set can be maintained with worst-case update time $O(\log n)$, and optimal output-sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension $d$, where the approximation ratio depends on the dimension and the fatness parameter. Further, we note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain $O(1+\varepsilon)$-approximate maximum independent set in truly sublinear update time, under standard complexity assumptions.

Quasiperiodic systems are important space-filling ordered structures, without decay and translational invariance. How to solve quasiperiodic systems accurately and efficiently is of great challenge. A useful approach, the projection method (PM) [J. Comput. Phys., 256: 428, 2014], has been proposed to compute quasiperiodic systems. Various studies have demonstrated that the PM is an accurate and efficient method to solve quasiperiodic systems. However, there is a lack of theoretical analysis of PM. In this paper, we present a rigorous convergence analysis of the PM by establishing a mathematical framework of quasiperiodic functions and their high-dimensional periodic functions. We also give a theoretical analysis of quasiperiodic spectral method (QSM) based on this framework. Results demonstrate that PM and QSM both have exponential decay, and the QSM (PM) is a generalization of the periodic Fourier spectral (pseudo-spectral) method. Then we analyze the computational complexity of PM and QSM in calculating quasiperiodic systems. The PM can use fast Fourier transform, while the QSM cannot. Moreover, we investigate the accuracy and efficiency of PM, QSM and periodic approximation method in solving the linear time-dependent quasiperiodic Schr\"{o}dinger equation.

Semi-supervised object detection is crucial for 3D scene understanding, efficiently addressing the limitation of acquiring large-scale 3D bounding box annotations. Existing methods typically employ a teacher-student framework with pseudo-labeling to leverage unlabeled point clouds. However, producing reliable pseudo-labels in a diverse 3D space still remains challenging. In this work, we propose Diffusion-SS3D, a new perspective of enhancing the quality of pseudo-labels via the diffusion model for semi-supervised 3D object detection. Specifically, we include noises to produce corrupted 3D object size and class label distributions, and then utilize the diffusion model as a denoising process to obtain bounding box outputs. Moreover, we integrate the diffusion model into the teacher-student framework, so that the denoised bounding boxes can be used to improve pseudo-label generation, as well as the entire semi-supervised learning process. We conduct experiments on the ScanNet and SUN RGB-D benchmark datasets to demonstrate that our approach achieves state-of-the-art performance against existing methods. We also present extensive analysis to understand how our diffusion model design affects performance in semi-supervised learning.

Disentanglement aims to recover meaningful latent ground-truth factors from the observed distribution solely, and is formalized through the theory of identifiability. The identifiability of independent latent factors is proven to be impossible in the unsupervised i.i.d. setting under a general nonlinear map from factors to observations. In this work, however, we demonstrate that it is possible to recover quantized latent factors under a generic nonlinear diffeomorphism. We only assume that the latent factors have independent discontinuities in their density, without requiring the factors to be statistically independent. We introduce this novel form of identifiability, termed quantized factor identifiability, and provide a comprehensive proof of the recovery of the quantized factors.

Intimacy estimation of a given text has recently gained importance due to the increase in direct interaction of NLP systems with humans. Intimacy is an important aspect of natural language and has a substantial impact on our everyday communication. Thus the level of intimacy can provide us with deeper insights and richer semantics of conversations. In this paper, we present our work on the SemEval shared task 9 on predicting the level of intimacy for the given text. The dataset consists of tweets in ten languages, out of which only six are available in the training dataset. We conduct several experiments and show that an ensemble of multilingual models along with a language-specific monolingual model has the best performance. We also evaluate other data augmentation methods such as translation and present the results. Lastly, we study the results thoroughly and present some noteworthy insights into this problem.

Many important tasks of large-scale recommender systems can be naturally cast as testing multiple linear forms for noisy matrix completion. These problems, however, present unique challenges because of the subtle bias-and-variance tradeoff of and an intricate dependence among the estimated entries induced by the low-rank structure. In this paper, we develop a general approach to overcome these difficulties by introducing new statistics for individual tests with sharp asymptotics both marginally and jointly, and utilizing them to control the false discovery rate (FDR) via a data splitting and symmetric aggregation scheme. We show that valid FDR control can be achieved with guaranteed power under nearly optimal sample size requirements using the proposed methodology. Extensive numerical simulations and real data examples are also presented to further illustrate its practical merits.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司