亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Free and open source software is widely used in the creation of software systems, whereas many organisations choose to provide their systems as open source. Open source software carries licenses that determine the conditions under which the original software can be used. Appropriate use of licenses requires relevant expertise by the practitioners, and has an important legal angle. Educators and employers need to ensure that developers have the necessary training to understand licensing risks and how they can be addressed. At the same time, it is important to understand which issues practitioners face when they are using a specific open source license, when they are developing new open source software products or when they are reusing open source software. In this work, we examine questions posed about open source software licensing using data from the following Stack Exchange sites: Stack Overflow, Software Engineering, Open Source and Law. We analyse the indication of specific licenses and topics in the questions, investigate the attention the posts receive and trends over time, whether appropriate answers are provided and which type of questions are asked. Our results indicate that practitioners need, among other, clarifications about licensing specific software when other licenses are used, and for understanding license content. The results of the study can be useful for educators and employers, organisations that are authoring open source software licenses and developers for understanding the issues faced when using licenses, whereas they are relevant to other software engineering research areas, such as software reusability.

相關內容

Software citation has accelerated in astrophysics in the past decade, resulting in the field now having multiple trackable ways to cite computational methods. Yet most software authors do not specify how they would like their code to be cited, while others specify a citation method that is not easily tracked (or tracked at all) by most indexers. Two metadata file formats, codemeta.json and CITATION.cff, developed in 2016 and 2017 respectively, are useful for specifying how software should be cited. In 2020, the Astrophysics Source Code Library (ASCL, ascl.net) undertook a year-long effort to generate and send these software metadata files, specific to each computational method, to code authors for editing and inclusion on their code sites. We wanted to answer the question, "Would sending these files to software authors increase adoption of one, the other, or both of these metadata files?" The answer in this case was no. Furthermore, only 41% of the 135 code sites examined for use of these files had citation information in any form available. The lack of such information creates an obstacle for article authors to provide credit to software creators, thus hindering citation of and recognition for computational contributions to research and the scientists who develop and maintain software.

In this paper, we analyze the security of programming languages and their execution environments (compilers and interpreters) with respect to Spectre attacks. The analysis shows that only 16 out of 42 execution environments have mitigations against at least one Spectre variant, i.e., 26 have no mitigations against any Spectre variant. Using our novel tool Speconnector, we develop Spectre proof-of-concept attacks in 8 programming languages and on code generated by 11 execution environments that were previously not known to be affected. Our results highlight some programming languages that are used to implement security-critical code, but remain entirely unprotected, even three years after the discovery of Spectre.

Human beings keep exploring the physical space using information means. Only recently, with the rapid development of information technologies and the increasing accumulation of data, human beings can learn more about the unknown world with data-driven methods. Given data timeliness, there is a growing awareness of the importance of real-time data. There are two categories of technologies accounting for data processing: batching big data and streaming processing, which have not been integrated well. Thus, we propose an innovative incremental processing technology named after Stream Cube to process both big data and stream data. Also, we implement a real-time intelligent data processing system, which is based on real-time acquisition, real-time processing, real-time analysis, and real-time decision-making. The real-time intelligent data processing technology system is equipped with a batching big data platform, data analysis tools, and machine learning models. Based on our applications and analysis, the real-time intelligent data processing system is a crucial solution to the problems of the national society and economy.

A key challenge of big data analytics is how to collect a large volume of (labeled) data. Crowdsourcing aims to address this challenge via aggregating and estimating high-quality data (e.g., sentiment label for text) from pervasive clients/users. Existing studies on crowdsourcing focus on designing new methods to improve the aggregated data quality from unreliable/noisy clients. However, the security aspects of such crowdsourcing systems remain under-explored to date. We aim to bridge this gap in this work. Specifically, we show that crowdsourcing is vulnerable to data poisoning attacks, in which malicious clients provide carefully crafted data to corrupt the aggregated data. We formulate our proposed data poisoning attacks as an optimization problem that maximizes the error of the aggregated data. Our evaluation results on one synthetic and two real-world benchmark datasets demonstrate that the proposed attacks can substantially increase the estimation errors of the aggregated data. We also propose two defenses to reduce the impact of malicious clients. Our empirical results show that the proposed defenses can substantially reduce the estimation errors of the data poisoning attacks.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

Deep neural networks (DNN) have achieved unprecedented success in numerous machine learning tasks in various domains. However, the existence of adversarial examples has raised concerns about applying deep learning to safety-critical applications. As a result, we have witnessed increasing interests in studying attack and defense mechanisms for DNN models on different data types, such as images, graphs and text. Thus, it is necessary to provide a systematic and comprehensive overview of the main threats of attacks and the success of corresponding countermeasures. In this survey, we review the state of the art algorithms for generating adversarial examples and the countermeasures against adversarial examples, for the three popular data types, i.e., images, graphs and text.

Multispectral imaging is an important technique for improving the readability of written or printed text where the letters have faded, either due to deliberate erasing or simply due to the ravages of time. Often the text can be read simply by looking at individual wavelengths, but in some cases the images need further enhancement to maximise the chances of reading the text. There are many possible enhancement techniques and this paper assesses and compares an extended set of dimensionality reduction methods for image processing. We assess 15 dimensionality reduction methods in two different manuscripts. This assessment was performed both subjectively by asking the opinions of scholars who were experts in the languages used in the manuscripts which of the techniques they preferred and also by using the Davies-Bouldin and Dunn indexes for assessing the quality of the resulted image clusters. We found that the Canonical Variates Analysis (CVA) method which was using a Matlab implementation and we have used previously to enhance multispectral images, it was indeed superior to all the other tested methods. However it is very likely that other approaches will be more suitable in specific circumstance so we would still recommend that a range of these techniques are tried. In particular, CVA is a supervised clustering technique so it requires considerably more user time and effort than a non-supervised technique such as the much more commonly used Principle Component Analysis Approach (PCA). If the results from PCA are adequate to allow a text to be read then the added effort required for CVA may not be justified. For the purposes of comparing the computational times and the image results, a CVA method is also implemented in C programming language and using the GNU (GNUs Not Unix) Scientific Library (GSL) and the OpenCV (OPEN source Computer Vision) computer vision programming library.

Sentiment analysis is a widely studied NLP task where the goal is to determine opinions, emotions, and evaluations of users towards a product, an entity or a service that they are reviewing. One of the biggest challenges for sentiment analysis is that it is highly language dependent. Word embeddings, sentiment lexicons, and even annotated data are language specific. Further, optimizing models for each language is very time consuming and labor intensive especially for recurrent neural network models. From a resource perspective, it is very challenging to collect data for different languages. In this paper, we look for an answer to the following research question: can a sentiment analysis model trained on a language be reused for sentiment analysis in other languages, Russian, Spanish, Turkish, and Dutch, where the data is more limited? Our goal is to build a single model in the language with the largest dataset available for the task, and reuse it for languages that have limited resources. For this purpose, we train a sentiment analysis model using recurrent neural networks with reviews in English. We then translate reviews in other languages and reuse this model to evaluate the sentiments. Experimental results show that our robust approach of single model trained on English reviews statistically significantly outperforms the baselines in several different languages.

A recent research trend has emerged to identify developers' emotions, by applying sentiment analysis to the content of communication traces left in collaborative development environments. Trying to overcome the limitations posed by using off-the-shelf sentiment analysis tools, researchers recently started to develop their own tools for the software engineering domain. In this paper, we report a benchmark study to assess the performance and reliability of three sentiment analysis tools specifically customized for software engineering. Furthermore, we offer a reflection on the open challenges, as they emerge from a qualitative analysis of misclassified texts.

北京阿比特科技有限公司