亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We resolve the open problem of designing a computationally efficient algorithm for infinite-horizon average-reward linear Markov Decision Processes (MDPs) with $\widetilde{O}(\sqrt{T})$ regret. Previous approaches with $\widetilde{O}(\sqrt{T})$ regret either suffer from computational inefficiency or require strong assumptions on dynamics, such as ergodicity. In this paper, we approximate the average-reward setting by the discounted setting and show that running an optimistic value iteration-based algorithm for learning the discounted setting achieves $\widetilde{O}(\sqrt{T})$ regret when the discounting factor $\gamma$ is tuned appropriately. The challenge in the approximation approach is to get a regret bound with a sharp dependency on the effective horizon $1 / (1 - \gamma)$. We use a computationally efficient clipping operator that constrains the span of the optimistic state value function estimate to achieve a sharp regret bound in terms of the effective horizon, which leads to $\widetilde{O}(\sqrt{T})$ regret.

相關內容

A near-field wideband beamforming scheme is investigated for reconfigurable intelligent surface (RIS) assisted multiple-input multiple-output (MIMO) systems, in which a deep learning-based end-to-end (E2E) optimization framework is proposed to maximize the system spectral efficiency. To deal with the near-field double beam split effect, the base station is equipped with frequency-dependent hybrid precoding architecture by introducing sub-connected true time delay (TTD) units, while two specific RIS architectures, namely true time delay-based RIS (TTD-RIS) and virtual subarray-based RIS (SA-RIS), are exploited to realize the frequency-dependent passive beamforming at the RIS. Furthermore, the efficient E2E beamforming models without explicit channel state information are proposed, which jointly exploits the uplink channel training module and the downlink wideband beamforming module. In the proposed network architecture of the E2E models, the classical communication signal processing methods, i.e., polarized filtering and sparsity transform, are leveraged to develop a signal-guided beamforming network. Numerical results show that the proposed E2E models have superior beamforming performance and robustness to conventional beamforming benchmarks. Furthermore, the tradeoff between the beamforming gain and the hardware complexity is investigated for different frequency-dependent RIS architectures, in which the TTD-RIS can achieve better spectral efficiency than the SA-RIS while requiring additional energy consumption and hardware cost.

We consider the problem of parameter estimation in a high-dimensional generalized linear model. Spectral methods obtained via the principal eigenvector of a suitable data-dependent matrix provide a simple yet surprisingly effective solution. However, despite their wide use, a rigorous performance characterization, as well as a principled way to preprocess the data, are available only for unstructured (i.i.d.\ Gaussian and Haar orthogonal) designs. In contrast, real-world data matrices are highly structured and exhibit non-trivial correlations. To address the problem, we consider correlated Gaussian designs capturing the anisotropic nature of the features via a covariance matrix $\Sigma$. Our main result is a precise asymptotic characterization of the performance of spectral estimators. This allows us to identify the optimal preprocessing that minimizes the number of samples needed for parameter estimation. Surprisingly, such preprocessing is universal across a broad set of designs, which partly addresses a conjecture on optimal spectral estimators for rotationally invariant models. Our principled approach vastly improves upon previous heuristic methods, including for designs common in computational imaging and genetics. The proposed methodology, based on approximate message passing, is broadly applicable and opens the way to the precise characterization of spiked matrices and of the corresponding spectral methods in a variety of settings.

We explore how much knowing a parametric restriction on propensity scores improves semiparametric efficiency bounds in the potential outcome framework. For stratified propensity scores, considered as a parametric model, we derive explicit formulas for the efficiency gain from knowing how the covariate space is split. Based on these, we find that the efficiency gain decreases as the partition of the stratification becomes finer. For general parametric models, where it is hard to obtain explicit representations of efficiency bounds, we propose a novel framework that enables us to see whether knowing a parametric model is valuable in terms of efficiency even when it is high-dimensional. In addition to the intuitive fact that knowing the parametric model does not help much if it is sufficiently flexible, we discover that the efficiency gain can be nearly zero even though the parametric assumption significantly restricts the space of possible propensity scores.

We propose the characteristic generator, a novel one-step generative model that combines the efficiency of sampling in Generative Adversarial Networks (GANs) with the stable performance of flow-based models. Our model is driven by characteristics, along which the probability density transport can be described by ordinary differential equations (ODEs). Specifically, We estimate the velocity field through nonparametric regression and utilize Euler method to solve the probability flow ODE, generating a series of discrete approximations to the characteristics. We then use a deep neural network to fit these characteristics, ensuring a one-step mapping that effectively pushes the prior distribution towards the target distribution. In the theoretical aspect, we analyze the errors in velocity matching, Euler discretization, and characteristic fitting to establish a non-asymptotic convergence rate for the characteristic generator in 2-Wasserstein distance. To the best of our knowledge, this is the first thorough analysis for simulation-free one step generative models. Additionally, our analysis refines the error analysis of flow-based generative models in prior works. We apply our method on both synthetic and real datasets, and the results demonstrate that the characteristic generator achieves high generation quality with just a single evaluation of neural network.

Tensegrities synergistically combine tensile (cable) and rigid (link) elements to achieve structural integrity, making them lightweight, packable, and impact resistant. Consequently, they have high potential for locomotion in unstructured environments. This research presents geometric modeling of a Tensegrity eXploratory Robot (TeXploR) comprised of two semi-circular, curved links held together by 12 prestressed cables and actuated with an internal mass shifting along each link. This design allows for efficient rolling with stability (e.g., tip-over on an incline). However, the unique design poses static and dynamic modeling challenges given the discontinuous nature of the semi-circular, curved links, two changing points of contact with the surface plane, and instantaneous movement of the masses along the links. The robot is modeled using a geometric approach where the holonomic constraints confirm the experimentally observed four-state hybrid system, proving TeXploR rolls along one link while pivoting about the end of the other. It also identifies the quasi-static state transition boundaries that enable a continuous change in the robot states via internal mass shifting. This is the first time in literature a non-spherical two-point contact system is kinematically and geometrically modeled. Furthermore, the static solutions are closed-form and do not require numerical exploration of the solution. The MATLAB simulations are experimentally validated on a tetherless prototype with mean absolute error of 4.36{\deg}.

Relation classification, a crucial component of relation extraction, involves identifying connections between two entities. Previous studies have predominantly focused on integrating the attention mechanism into relation classification at a global scale, overlooking the importance of the local context. To address this gap, this paper introduces a novel global-local attention mechanism for relation classification, which enhances global attention with a localized focus. Additionally, we propose innovative hard and soft localization mechanisms to identify potential keywords for local attention. By incorporating both hard and soft localization strategies, our approach offers a more nuanced and comprehensive understanding of the contextual cues that contribute to effective relation classification. Our experimental results on the SemEval-2010 Task 8 dataset highlight the superior performance of our method compared to previous attention-based approaches in relation classification.

Finding a simple path of even length between two designated vertices in a directed graph is a fundamental NP-complete problem known as the EvenPath problem. Nedev proved in 1999, that for directed planar graphs, the problem can be solved in polynomial time. More than two decades since then, we make the first progress in extending the tractable classes of graphs for this problem. We give a polynomial time algorithm to solve the EvenPath problem for classes of H-minor-free directed graphs,1 where H is a single-crossing graph. We make two new technical contributions along the way, that might be of independent interest. The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking networks. These are graphs that mimic parities of all possible paths between a designated set of terminals of the original graph. Finding vertex disjoint paths between given source-destination pairs of vertices is another fundamental problem, known to be NP-complete in directed graphs, though known to be tractable in planar directed graphs. We encounter a natural variant of this problem, that of finding disjoint paths between given pairs of vertices, but with constraints on parity of the total length of paths. The other significant contribution of our paper is to give a polynomial time algorithm for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions (and also in directed graphs of bounded treewidth).

We propose and discuss a paradigm that allows for expressing \emph{data-parallel} rendering with the classically non-parallel ANARI API. We propose this as a new standard for data-parallel sci-vis rendering, describe two different implementations of this paradigm, and use multiple sample integrations into existing apps to show how easy it is to adopt this paradigm, and what can be gained from doing so.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司