亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It is expected that B5G/6G networks will exploit both terahertz (THz) and millimetre wave (mmWave) frequency bands and will increase flexibility in user equipment (UE)-cell association. In this paper, we introduce a novel stochastic geometry-based framework for the analysis of the signal-to-interference-plus-noise-ratio (SINR) and rate coverage in a multi-tier hybrid mmWave and THz network, where each tier has a particular base station (BS) density, transmit power, bandwidth, number of BS antennas, and cell-association bias factor. The proposed framework incorporates the effects of mmWave and THz channel characteristics, BS beamforming gain, and blockages. We investigate the downlink (DL) and uplink (UL) decoupled cell-association strategy and characterise the per-tier cell-association probability. Based on that, we analytically derive the SINR and rate coverage probabilities of a typical user for both DL and UL transmissions. The analytical results are validated via extensive Monte Carlo simulations. Numerical results demonstrate the superiority of the DL and UL decoupled cell-association strategy in terms of SINR and rate coverage over its coupled counterpart. Moreover, we observe that the superiority of using the DL and UL decoupled cell-association strategy becomes more evident with the dense deployment of THz networks.

相關內容

Computed Tomography (CT) is commonly used to image acute ischemic stroke (AIS) patients, but its interpretation by radiologists is time-consuming and subject to inter-observer variability. Deep learning (DL) techniques can provide automated CT brain scan assessment, but usually require annotated images. Aiming to develop a DL method for AIS using labelled but not annotated CT brain scans from patients with AIS, we designed a convolutional neural network-based DL algorithm using routinely-collected CT brain scans from the Third International Stroke Trial (IST-3), which were not acquired using strict research protocols. The DL model aimed to detect AIS lesions and classify the side of the brain affected. We explored the impact of AIS lesion features, background brain appearances, and timing on DL performance. From 5772 unique CT scans of 2347 AIS patients (median age 82), 54% had visible AIS lesions according to expert labelling. Our best-performing DL method achieved 72% accuracy for lesion presence and side. Lesions that were larger (80% accuracy) or multiple (87% accuracy for two lesions, 100% for three or more), were better detected. Follow-up scans had 76% accuracy, while baseline scans 67% accuracy. Chronic brain conditions reduced accuracy, particularly non-stroke lesions and old stroke lesions (32% and 31% error rates respectively). DL methods can be designed for AIS lesion detection on CT using the vast quantities of routinely-collected CT brain scan data. Ultimately, this should lead to more robust and widely-applicable methods.

In this study, we aim to enhance the arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization. We identify a previously overlooked objective of query dependency in such optimization and elucidate two ensuing challenges that impede the successful and economical design of prompt optimization techniques. One primary issue is the absence of an effective method to evaluate prompts during inference when the golden answer is unavailable. Concurrently, learning via interactions with the LLMs to navigate the expansive natural language prompting space proves to be resource-intensive. To address this, we introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data. Such data exists as by-products when diverse prompts are benchmarked on open-accessible datasets. With Prompt-OIRL, the query-dependent prompt optimization objective is achieved by first learning an offline reward model. This model can evaluate any query-prompt pairs without accessing LLMs. Subsequently, a best-of-N strategy is deployed to recommend the optimal prompt. Our experimental evaluations across various LLM scales and arithmetic reasoning datasets underscore both the efficacy and economic viability of the proposed approach.

In this work we introduce the CitrusFarm dataset, a comprehensive multimodal sensory dataset collected by a wheeled mobile robot operating in agricultural fields. The dataset offers stereo RGB images with depth information, as well as monochrome, near-infrared and thermal images, presenting diverse spectral responses crucial for agricultural research. Furthermore, it provides a range of navigational sensor data encompassing wheel odometry, LiDAR, inertial measurement unit (IMU), and GNSS with Real-Time Kinematic (RTK) as the centimeter-level positioning ground truth. The dataset comprises seven sequences collected in three fields of citrus trees, featuring various tree species at different growth stages, distinctive planting patterns, as well as varying daylight conditions. It spans a total operation time of 1.7 hours, covers a distance of 7.5 km, and constitutes 1.3 TB of data. We anticipate that this dataset can facilitate the development of autonomous robot systems operating in agricultural tree environments, especially for localization, mapping and crop monitoring tasks. Moreover, the rich sensing modalities offered in this dataset can also support research in a range of robotics and computer vision tasks, such as place recognition, scene understanding, object detection and segmentation, and multimodal learning. The dataset, in conjunction with related tools and resources, is made publicly available at //github.com/UCR-Robotics/Citrus-Farm-Dataset.

We propose a modular pipeline for the single-channel separation, recognition, and diarization of meeting-style recordings and evaluate it on the Libri-CSS dataset. Using a Continuous Speech Separation (CSS) system with a TF-GridNet separation architecture, followed by a speaker-agnostic speech recognizer, we achieve state-of-the-art recognition performance in terms of Optimal Reference Combination Word Error Rate (ORC WER). Then, a d-vector-based diarization module is employed to extract speaker embeddings from the enhanced signals and to assign the CSS outputs to the correct speaker. Here, we propose a syntactically informed diarization using sentence- and word-level boundaries of the ASR module to support speaker turn detection. This results in a state-of-the-art Concatenated minimum-Permutation Word Error Rate (cpWER) for the full meeting recognition pipeline.

We study 'Merlinized' versions of the recently defined Guided Local Hamiltonian problem, which we call 'Guidable Local Hamiltonian' problems. Unlike their guided counterparts, these problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists. We consider in particular two classes of guiding states: those that can be prepared efficiently by a quantum circuit; and those belonging to a class of quantum states we call classically evaluatable, for which it is possible to efficiently compute expectation values of local observables classically. We show that guidable local Hamiltonian problems for both classes of guiding states are $\mathsf{QCMA}$-complete in the inverse-polynomial precision setting, but lie within $\mathsf{NP}$ (or $\mathsf{NqP}$) in the constant precision regime when the guiding state is classically evaluatable. Our completeness results show that, from a complexity-theoretic perspective, classical Ans\"atze selected by classical heuristics are just as powerful as quantum Ans\"atze prepared by quantum heuristics, as long as one has access to quantum phase estimation. In relation to the quantum PCP conjecture, we (i) define a complexity class capturing quantum-classical probabilistically checkable proof systems and show that it is contained in $\mathsf{BQP}^{\mathsf{NP}[1]}$ for constant proof queries; (ii) give a no-go result on 'dequantizing' the known quantum reduction which maps a $\mathsf{QPCP}$-verification circuit to a local Hamiltonian with constant promise gap; (iii) give several no-go results for the existence of quantum gap amplification procedures that preserve certain ground state properties; and (iv) propose two conjectures that can be viewed as stronger versions of the NLTS theorem. Finally, we show that many of our results can be directly modified to obtain similar results for the class $\mathsf{MA}$.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司