Federated Recommender Systems (FedRecs) are considered privacy-preserving techniques to collaboratively learn a recommendation model without sharing user data. Since all participants can directly influence the systems by uploading gradients, FedRecs are vulnerable to poisoning attacks of malicious clients. However, most existing poisoning attacks on FedRecs are either based on some prior knowledge or with less effectiveness. To reveal the real vulnerability of FedRecs, in this paper, we present a new poisoning attack method to manipulate target items' ranks and exposure rates effectively in the top-$K$ recommendation without relying on any prior knowledge. Specifically, our attack manipulates target items' exposure rate by a group of synthetic malicious users who upload poisoned gradients considering target items' alternative products. We conduct extensive experiments with two widely used FedRecs (Fed-NCF and Fed-LightGCN) on two real-world recommendation datasets. The experimental results show that our attack can significantly improve the exposure rate of unpopular target items with extremely fewer malicious users and fewer global epochs than state-of-the-art attacks. In addition to disclosing the security hole, we design a novel countermeasure for poisoning attacks on FedRecs. Specifically, we propose a hierarchical gradient clipping with sparsified updating to defend against existing poisoning attacks. The empirical results demonstrate that the proposed defending mechanism improves the robustness of FedRecs.
Auction-based recommender systems are prevalent in online advertising platforms, but they are typically optimized to allocate recommendation slots based on immediate expected return metrics, neglecting the downstream effects of recommendations on user behavior. In this study, we employ reinforcement learning to optimize for long-term return metrics in an auction-based recommender system. Utilizing temporal difference learning, a fundamental reinforcement learning algorithm, we implement an one-step policy improvement approach that biases the system towards recommendations with higher long-term user engagement metrics. This optimizes value over long horizons while maintaining compatibility with the auction framework. Our approach is grounded in dynamic programming ideas which show that our method provably improves upon the existing auction-based base policy. Through an online A/B test conducted on an auction-based recommender system which handles billions of impressions and users daily, we empirically establish that our proposed method outperforms the current production system in terms of long-term user engagement metrics.
Training an ensemble of diverse sub-models has been empirically demonstrated as an effective strategy for improving the adversarial robustness of deep neural networks. However, current ensemble training methods for image recognition typically encode image labels using one-hot vectors, which overlook dependency relationships between the labels. In this paper, we propose a novel adversarial en-semble training approach that jointly learns the label dependencies and member models. Our approach adaptively exploits the learned label dependencies to pro-mote diversity among the member models. We evaluate our approach on widely used datasets including MNIST, FashionMNIST, and CIFAR-10, and show that it achieves superior robustness against black-box attacks compared to state-of-the-art methods. Our code is available at //github.com/ZJLAB-AMMI/LSD.
Federated recommendation system is a recently emerging architecture, which provides recommendation services without exposing users' private data. Existing methods are mainly designed to recommend items already existing in the system. In practical scenarios, the system continuously introduces new items and recommends them to users, i.e., cold-start recommendation. To recommend cold items, existing federated recommendation models require collecting new interactions from users and retraining the model, which is time-consuming and poses a privacy threat to users' sensitive information. This paper presents a novel Item-guided Federated aggregation for cold-start Recommendation (IFedRec) framework. The IFedRec exchanges the item embedding to learn the common item preference semantic and preserves other model parameters locally to capture user personalization. Besides, it deploys a meta attribute network on the server to learn the item feature semantic, and a semantic alignment mechanism is presented to align both kinds of item semantic. When the new items arrive, each client can make recommendations with item feature semantic learned from the meta attribute network by incorporating the locally personalized model without retraining. Experiments on four benchmark datasets demonstrate IFedRec's outstanding performance for cold-start recommendation. Besides, in-depth analysis verifies IFedRec's learning ability for cold items while protecting user's privacy.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
Command, Control, Communication, and Intelligence (C3I) system is a kind of system-of-system that integrates computing machines, sensors, and communication networks. C3I systems are increasingly used in critical civil and military operations for achieving information superiority, assurance, and operational efficacy. C3I systems are no exception to the traditional systems facing widespread cyber-threats. However, the sensitive nature of the application domain (e.g., military operations) of C3I systems makes their security a critical concern. For instance, a cyber-attack on military installations can have detrimental impacts on national security. Therefore, in this paper, we review the state-of-the-art on the security of C3I systems. In particular, this paper aims to identify the security vulnerabilities, attack vectors, and countermeasures for C3I systems. We used the well-known systematic literature review method to select and review 77 studies on the security of C3I systems. Our review enabled us to identify 27 vulnerabilities, 22 attack vectors, and 62 countermeasures for C3I systems. This review has also revealed several areas for future research and identified key lessons with regards to C3I systems' security.
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN models, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the user's embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
Backdoor attack intends to embed hidden backdoor into deep neural networks (DNNs), such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger. Backdoor attack could happen when the training process is not fully controlled by the user, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, its systematic review, however, remains blank. In this paper, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and the relevant fields ($i.e.,$ adversarial attack and data poisoning), and summarize the benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works.
Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.
Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.
Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.