亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate a class of combinatory algebras, called ribbon combinatory algebras, in which we can interpret both the braided untyped linear lambda calculus and framed oriented tangles. Any reflexive object in a ribbon category gives rise to a ribbon combinatory algebra. Conversely, From a ribbon combinatory algebra, we can construct a ribbon category with a reflexive object, from which the combinatory algebra can be recovered. To show this, and also to give the equational characterisation of ribbon combinatory algebras, we make use of the internal PRO construction developed in Hasegawa's recent work. Interestingly, we can characterise ribbon combinatory algebras in two different ways: as balanced combinatory algebras with a trace combinator, and as balanced combinatory algebras with duality.

相關內容

Structural identifiability is an important property of parametric ODE models. When conducting an experiment and inferring the parameter value from the time-series data, we want to know if the value is globally, locally, or non-identifiable. Global identifiability of the parameter indicates that there exists only one possible solution to the inference problem, local identifiability suggests that there could be several (but finitely many) possibilities, while non-identifiability implies that there are infinitely many possibilities for the value. Having this information is useful since, one would, for example, only perform inferences for the parameters which are identifiable. Given the current significance and widespread research conducted in this area, we decided to create a database of linear compartment models and their identifiability results. This facilitates the process of checking theorems and conjectures and drawing conclusions on identifiability. By only storing models up to symmetries and isomorphisms, we optimize memory efficiency and reduce query time. We conclude by applying our database to real problems. We tested a conjecture about deleting one leak of the model states in the paper 'Linear compartmental models: Input-output equations and operations that preserve identifiability' by E. Gross et al., and managed to produce a counterexample. We also compute some interesting statistics related to the identifiability of linear compartment model parameters.

Bayesian inference for complex models with an intractable likelihood can be tackled using algorithms performing many calls to computer simulators. These approaches are collectively known as "simulation-based inference" (SBI). Recent SBI methods have made use of neural networks (NN) to provide approximate, yet expressive constructs for the unavailable likelihood function and the posterior distribution. However, the trade-off between accuracy and computational demand leaves much space for improvement. In this work, we propose an alternative that provides both approximations to the likelihood and the posterior distribution, using structured mixtures of probability distributions. Our approach produces accurate posterior inference when compared to state-of-the-art NN-based SBI methods, even for multimodal posteriors, while exhibiting a much smaller computational footprint. We illustrate our results on several benchmark models from the SBI literature and on a biological model of the translation kinetics after mRNA transfection.

The present work concerns the derivation of a numerical scheme to approximate weak solutions of the Euler equations with a gravitational source term. The designed scheme is proved to be fully well-balanced since it is able to exactly preserve all moving equilibrium solutions, as well as the corresponding steady solutions at rest obtained when the velocity vanishes. Moreover, the proposed scheme is entropy-preserving since it satisfies all fully discrete entropy inequalities. In addition, in order to satisfy the required admissibility of the approximate solutions, the positivity of both approximate density and pressure is established. Several numerical experiments attest the relevance of the developed numerical method.

Precision matrices are crucial in many fields such as social networks, neuroscience, and economics, representing the edge structure of Gaussian graphical models (GGMs), where a zero in an off-diagonal position of the precision matrix indicates conditional independence between nodes. In high-dimensional settings where the dimension of the precision matrix $p$ exceeds the sample size $n$ and the matrix is sparse, methods like graphical Lasso, graphical SCAD, and CLIME are popular for estimating GGMs. While frequentist methods are well-studied, Bayesian approaches for (unstructured) sparse precision matrices are less explored. The graphical horseshoe estimate by \citet{li2019graphical}, applying the global-local horseshoe prior, shows superior empirical performance, but theoretical work for sparse precision matrix estimations using shrinkage priors is limited. This paper addresses these gaps by providing concentration results for the tempered posterior with the fully specified horseshoe prior in high-dimensional settings. Moreover, we also provide novel theoretical results for model misspecification, offering a general oracle inequality for the posterior.

Learning tasks play an increasingly prominent role in quantum information and computation. They range from fundamental problems such as state discrimination and metrology over the framework of quantum probably approximately correct (PAC) learning, to the recently proposed shadow variants of state tomography. However, the many directions of quantum learning theory have so far evolved separately. We propose a general mathematical formalism for describing quantum learning by training on classical-quantum data and then testing how well the learned hypothesis generalizes to new data. In this framework, we prove bounds on the expected generalization error of a quantum learner in terms of classical and quantum information-theoretic quantities measuring how strongly the learner's hypothesis depends on the specific data seen during training. To achieve this, we use tools from quantum optimal transport and quantum concentration inequalities to establish non-commutative versions of decoupling lemmas that underlie recent information-theoretic generalization bounds for classical machine learning. Our framework encompasses and gives intuitively accessible generalization bounds for a variety of quantum learning scenarios such as quantum state discrimination, PAC learning quantum states, quantum parameter estimation, and quantumly PAC learning classical functions. Thereby, our work lays a foundation for a unifying quantum information-theoretic perspective on quantum learning.

Complex conjugate matrix equations (CCME) have aroused the interest of many researchers because of computations and antilinear systems. Existing research is dominated by its time-invariant solving methods, but lacks proposed theories for solving its time-variant version. Moreover, artificial neural networks are rarely studied for solving CCME. In this paper, starting with the earliest CCME, zeroing neural dynamics (ZND) is applied to solve its time-variant version. Firstly, the vectorization and Kronecker product in the complex field are defined uniformly. Secondly, Con-CZND1 model and Con-CZND2 model are proposed and theoretically prove convergence and effectiveness. Thirdly, three numerical experiments are designed to illustrate the effectiveness of the two models, compare their differences, highlight the significance of neural dynamics in the complex field, and refine the theory related to ZND.

Close to the origin, the nonlinear Klein--Gordon equations on the circle are nearly integrable Hamiltonian systems which have infinitely many almost conserved quantities called harmonic actions or super-actions. We prove that, at low regularity and with a CFL number of size 1, this property is preserved if we discretize the nonlinear Klein--Gordon equations with the symplectic mollified impulse methods. This extends previous results of D. Cohen, E. Hairer and C. Lubich to non-smooth solutions.

PEPit is a Python package aiming at simplifying the access to worst-case analyses of a large family of first-order optimization methods possibly involving gradient, projection, proximal, or linear optimization oracles, along with their approximate, or Bregman variants. In short, PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. The key underlying idea is to cast the problem of performing a worst-case analysis, often referred to as a performance estimation problem (PEP), as a semidefinite program (SDP) which can be solved numerically. To do that, the package users are only required to write first-order methods nearly as they would have implemented them. The package then takes care of the SDP modeling parts, and the worst-case analysis is performed numerically via a standard solver.

We prove the well posedness in weighted Sobolev spaces of certain linear and nonlinear elliptic boundary value problems posed on convex domains and under singular forcing. It is assumed that the weights belong to the Muckenhoupt class $A_p$ with $p \in (1,\infty$). We also propose and analyze a convergent finite element discretization for the nonlinear elliptic boundary value problems mentioned above. As an instrumental result, we prove that the discretization of certain linear problems are well posed in weighted spaces.

We study the computational problem of rigorously describing the asymptotic behaviour of topological dynamical systems up to a finite but arbitrarily small pre-specified error. More precisely, we consider the limit set of a typical orbit, both as a spatial object (attractor set) and as a statistical distribution (physical measure), and prove upper bounds on the computational resources of computing descriptions of these objects with arbitrary accuracy. We also study how these bounds are affected by different dynamical constrains and provide several examples showing that our bounds are sharp in general. In particular, we exhibit a computable interval map having a unique transitive attractor with Cantor set structure supporting a unique physical measure such that both the attractor and the measure are non computable.

北京阿比特科技有限公司