亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We model a family of closed kinematic chains, known as Kaleidocycles, with the theory of discrete spatial curves. By leveraging the connection between the deformation of discrete curves and the semi-discrete integrable systems, we describe the motion of a Kaleidocycle by elliptic theta functions. This study showcases an interesting example in which an integrable system generates an orbit in the space of the real solutions of polynomial equations defined by geometric constraints.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Functional graphs (FGs) model the graph structures used to analyze the behavior of functions from a discrete set to itself. In turn, such functions are used to study real complex phenomena evolving in time. As the systems involved can be quite large, it is interesting to decompose and factorize them into several subgraphs acting together. Polynomial equations over functional graphs provide a formal way to represent this decomposition and factorization mechanism, and solving them validates or invalidates hypotheses on their decomposability. The current solution method breaks down a single equation into a series of \emph{basic} equations of the form $A\times X=B$ (with $A$, $X$, and $B$ being FGs) to identify the possible solutions. However, it is able to consider just FGs made of cycles only. This work proposes an algorithm for solving these basic equations for general connected FGs. By exploiting a connection with the cancellation problem, we prove that the upper bound to the number of solutions is closely related to the size of the cycle in the coefficient $A$ of the equation. The cancellation problem is also involved in the main algorithms provided by the paper. We introduce a polynomial-time semi-decision algorithm able to provide constraints that a potential solution will have to satisfy if it exists. Then, exploiting the ideas introduced in the first algorithm, we introduce a second exponential-time algorithm capable of finding all solutions by integrating several `hacks' that try to keep the exponential as tight as possible.

We investigate the frequentist guarantees of the variational sparse Gaussian process regression model. In the theoretical analysis, we focus on the variational approach with spectral features as inducing variables. We derive guarantees and limitations for the frequentist coverage of the resulting variational credible sets. We also derive sufficient and necessary lower bounds for the number of inducing variables required to achieve minimax posterior contraction rates. The implications of these results are demonstrated for different choices of priors. In a numerical analysis we consider a wider range of inducing variable methods and observe similar phenomena beyond the scope of our theoretical findings.

We consider a kinetic model of an N-species gas mixture modeled with quantum Bhatnagar-Gross-Krook (BGK) collision operators. The collision operators consist of a relaxation to a Maxwell distribution in the classical case, a Fermi distribution for fermions and a Bose-Einstein distribution for bosons. In this paper we present a numerical method for simulating this model, which uses an Implicit-Explicit (IMEX) scheme to minimize a certain potential function. This is motivated by theoretical considerations coming from entropy minimization. We show that theoretical properties such as conservation of mass, total momentum and total energy as well as positivity of the distribution functions are preserved by the numerical method presented in this paper, and illustrate its usefulness and effectiveness with numerical examples

We present ReCAT, a recursive composition augmented Transformer that is able to explicitly model hierarchical syntactic structures of raw texts without relying on gold trees during both learning and inference. Existing research along this line restricts data to follow a hierarchical tree structure and thus lacks inter-span communications. To overcome the problem, we propose a novel contextual inside-outside (CIO) layer that learns contextualized representations of spans through bottom-up and top-down passes, where a bottom-up pass forms representations of high-level spans by composing low-level spans, while a top-down pass combines information inside and outside a span. By stacking several CIO layers between the embedding layer and the attention layers in Transformer, the ReCAT model can perform both deep intra-span and deep inter-span interactions, and thus generate multi-grained representations fully contextualized with other spans. Moreover, the CIO layers can be jointly pre-trained with Transformers, making ReCAT enjoy scaling ability, strong performance, and interpretability at the same time. We conduct experiments on various sentence-level and span-level tasks. Evaluation results indicate that ReCAT can significantly outperform vanilla Transformer models on all span-level tasks and baselines that combine recursive networks with Transformers on natural language inference tasks. More interestingly, the hierarchical structures induced by ReCAT exhibit strong consistency with human-annotated syntactic trees, indicating good interpretability brought by the CIO layers.

Different notions of the consistency of obligations collapse in standard deontic logic. In justification logics, which feature explicit reasons for obligations, the situation is different. Their strength depends on a constant specification and on the available set of operations for combining different reasons. We present different consistency principles in justification logic and compare their logical strength. We propose a novel semantics for which justification logics with the explicit version of axiom D, jd, are complete for arbitrary constant specifications. Consistency is sometimes formulated in terms of permission. We therefore study permission in the context of justification logic, introducing a notion of free-choice permission for the first time. We then discuss the philosophical implications with regard to some deontic paradoxes.

When dealing with difficult inverse problems such as inverse rendering, using Monte Carlo estimated gradients to optimise parameters can slow down convergence due to variance. Averaging many gradient samples in each iteration reduces this variance trivially. However, for problems that require thousands of optimisation iterations, the computational cost of this approach rises quickly. We derive a theoretical framework for interleaving sampling and optimisation. We update and reuse past samples with low-variance finite-difference estimators that describe the change in the estimated gradients between each iteration. By combining proportional and finite-difference samples, we continuously reduce the variance of our novel gradient meta-estimators throughout the optimisation process. We investigate how our estimator interlinks with Adam and derive a stable combination. We implement our method for inverse path tracing and demonstrate how our estimator speeds up convergence on difficult optimisation tasks.

Multi-behavioral sequential recommendation has recently attracted increasing attention. However, existing methods suffer from two major limitations. Firstly, user preferences and intents can be described in fine-grained detail from multiple perspectives; yet, these methods fail to capture their multi-aspect nature. Secondly, user behaviors may contain noises, and most existing methods could not effectively deal with noises. In this paper, we present an attentive recurrent model with multiple projections to capture Multi-Aspect preferences and INTents (MAINT in short). To extract multi-aspect preferences from target behaviors, we propose a multi-aspect projection mechanism for generating multiple preference representations from multiple aspects. To extract multi-aspect intents from multi-typed behaviors, we propose a behavior-enhanced LSTM and a multi-aspect refinement attention mechanism. The attention mechanism can filter out noises and generate multiple intent representations from different aspects. To adaptively fuse user preferences and intents, we propose a multi-aspect gated fusion mechanism. Extensive experiments conducted on real-world datasets have demonstrated the effectiveness of our model.

Model averaging (MA), a technique for combining estimators from a set of candidate models, has attracted increasing attention in machine learning and statistics. In the existing literature, there is an implicit understanding that MA can be viewed as a form of shrinkage estimation that draws the response vector towards the subspaces spanned by the candidate models. This paper explores this perspective by establishing connections between MA and shrinkage in a linear regression setting with multiple nested models. We first demonstrate that the optimal MA estimator is the best linear estimator with monotone non-increasing weights in a Gaussian sequence model. The Mallows MA, which estimates weights by minimizing the Mallows' $C_p$, is a variation of the positive-part Stein estimator. Motivated by these connections, we develop a novel MA procedure based on a blockwise Stein estimation. Our resulting Stein-type MA estimator is asymptotically optimal across a broad parameter space when the variance is known. Numerical results support our theoretical findings. The connections established in this paper may open up new avenues for investigating MA from different perspectives. A discussion on some topics for future research concludes the paper.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

北京阿比特科技有限公司