We present a new direct adaptive control approach for nonlinear systems with unmatched and matched uncertainties. The method relies on adjusting the adaptation gains of individual unmatched parameters whose adaptation transients would otherwise destabilize the closed-loop system. The approach also guarantees the restoration of the adaptation gains to their nominal values and can readily incorporate direct adaptation laws for matched uncertainties. The proposed framework is general as it only requires stabilizability for all possible models.
In recent years, the results of view-based 3D shape recognition methods have saturated, and models with excellent performance cannot be deployed on memory-limited devices due to their huge size of parameters. To address this problem, we introduce a compression method based on knowledge distillation for this field, which largely reduces the number of parameters while preserving model performance as much as possible. Specifically, to enhance the capabilities of smaller models, we design a high-performing large model called Group Multi-view Vision Transformer (GMViT). In GMViT, the view-level ViT first establishes relationships between view-level features. Additionally, to capture deeper features, we employ the grouping module to enhance view-level features into group-level features. Finally, the group-level ViT aggregates group-level features into complete, well-formed 3D shape descriptors. Notably, in both ViTs, we introduce spatial encoding of camera coordinates as innovative position embeddings. Furthermore, we propose two compressed versions based on GMViT, namely GMViT-simple and GMViT-mini. To enhance the training effectiveness of the small models, we introduce a knowledge distillation method throughout the GMViT process, where the key outputs of each GMViT component serve as distillation targets. Extensive experiments demonstrate the efficacy of the proposed method. The large model GMViT achieves excellent 3D classification and retrieval results on the benchmark datasets ModelNet, ShapeNetCore55, and MCB. The smaller models, GMViT-simple and GMViT-mini, reduce the parameter size by 8 and 17.6 times, respectively, and improve shape recognition speed by 1.5 times on average, while preserving at least 90% of the classification and retrieval performance.
Graph outlier detection is a prominent task of research and application in the realm of graph neural networks. It identifies the outlier nodes that exhibit deviation from the majority in the graph. One of the fundamental challenges confronting supervised graph outlier detection algorithms is the prevalent issue of class imbalance, where the scarcity of outlier instances compared to normal instances often results in suboptimal performance. Conventional methods mitigate the imbalance by reweighting instances in the estimation of the loss function, assigning higher weights to outliers and lower weights to inliers. Nonetheless, these strategies are prone to overfitting and underfitting, respectively. Recently, generative models, especially diffusion models, have demonstrated their efficacy in synthesizing high-fidelity images. Despite their extraordinary generation quality, their potential in data augmentation for supervised graph outlier detection remains largely underexplored. To bridge this gap, we introduce GODM, a novel data augmentation for mitigating class imbalance in supervised Graph Outlier detection with latent Diffusion Models. Specifically, our proposed method consists of three key components: (1) Variantioanl Encoder maps the heterogeneous information inherent within the graph data into a unified latent space. (2) Graph Generator synthesizes graph data that are statistically similar to real outliers from latent space, and (3) Latent Diffusion Model learns the latent space distribution of real organic data by iterative denoising. Extensive experiments conducted on multiple datasets substantiate the effectiveness and efficiency of GODM. The case study further demonstrated the generation quality of our synthetic data. To foster accessibility and reproducibility, we encapsulate GODM into a plug-and-play package and release it at the Python Package Index (PyPI).
Video grounding aims to localize the target moment in an untrimmed video corresponding to a given sentence query. Existing methods typically select the best prediction from a set of predefined proposals or directly regress the target span in a single-shot manner, resulting in the absence of a systematical prediction refinement process. In this paper, we propose DiffusionVG, a novel framework with diffusion models that formulates video grounding as a conditional generation task, where the target span is generated from Gaussian noise inputs and interatively refined in the reverse diffusion process. During training, DiffusionVG progressively adds noise to the target span with a fixed forward diffusion process and learns to recover the target span in the reverse diffusion process. In inference, DiffusionVG can generate the target span from Gaussian noise inputs by the learned reverse diffusion process conditioned on the video-sentence representations. Without bells and whistles, our DiffusionVG demonstrates superior performance compared to existing well-crafted models on mainstream Charades-STA, ActivityNet Captions and TACoS benchmarks.
Training large machine learning models requires a distributed computing approach, with communication of the model updates being the bottleneck. For this reason, several methods based on the compression (e.g., sparsification and/or quantization) of updates were recently proposed, including QSGD (Alistarh et al., 2017), TernGrad (Wen et al., 2017), SignSGD (Bernstein et al., 2018), and DQGD (Khirirat et al., 2018). However, none of these methods are able to learn the gradients, which renders them incapable of converging to the true optimum in the batch mode. In this work we propose a new distributed learning method -- DIANA -- which resolves this issue via compression of gradient differences. We perform a theoretical analysis in the strongly convex and nonconvex settings and show that our rates are superior to existing rates. We also provide theory to support non-smooth regularizers study the difference between quantization schemes. Our analysis of block-quantization and differences between $\ell_2$ and $\ell_{\infty}$ quantization closes the gaps in theory and practice. Finally, by applying our analysis technique to TernGrad, we establish the first convergence rate for this method.
AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.
Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
We propose a novel method for automatic reasoning on knowledge graphs based on debate dynamics. The main idea is to frame the task of triple classification as a debate game between two reinforcement learning agents which extract arguments -- paths in the knowledge graph -- with the goal to promote the fact being true (thesis) or the fact being false (antithesis), respectively. Based on these arguments, a binary classifier, called the judge, decides whether the fact is true or false. The two agents can be considered as sparse, adversarial feature generators that present interpretable evidence for either the thesis or the antithesis. In contrast to other black-box methods, the arguments allow users to get an understanding of the decision of the judge. Since the focus of this work is to create an explainable method that maintains a competitive predictive accuracy, we benchmark our method on the triple classification and link prediction task. Thereby, we find that our method outperforms several baselines on the benchmark datasets FB15k-237, WN18RR, and Hetionet. We also conduct a survey and find that the extracted arguments are informative for users.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.