亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A bipartite experiment consists of one set of units being assigned treatments and another set of units for which we measure outcomes. The two sets of units are connected by a bipartite graph, governing how the treated units can affect the outcome units. In this paper, we consider estimation of the average total treatment effect in the bipartite experimental framework under a linear exposure-response model. We introduce the Exposure Reweighted Linear (ERL) estimator, and show that the estimator is unbiased, consistent and asymptotically normal, provided that the bipartite graph is sufficiently sparse. To facilitate inference, we introduce an unbiased and consistent estimator of the variance of the ERL point estimator. In addition, we introduce a cluster-based design, Exposure-Design, that uses heuristics to increase the precision of the ERL estimator by realizing a desirable exposure distribution.

相關內容

Low-dimensional models are ubiquitous in the bipedal robotics literature. On the one hand is the community of researchers that bases feedback control design on pendulum models selected to capture the center of mass dynamics of the robot during walking. On the other hand is the community that bases feedback control design on virtual constraints, which induce an exact low-dimensional model in the closed-loop system. In the first case, the low-dimensional model is valued for its physical insight and analytical tractability. In the second case, the low-dimensional model is integral to a rigorous analysis of the stability of walking gaits in the full-dimensional model of the robot. This paper seeks to clarify the commonalities and differences in the two perspectives for using low-dimensional models. In the process of doing so, we argue that angular momentum about the contact point is a better indicator of robot state than linear velocity. Concretely, we show that an approximate (pendulum and zero dynamics) model parameterized by angular momentum provides better predictions for foot placement on a physical robot (e.g., legs with mass) than does a related approximate model parameterized in terms of linear velocity. We implement an associated angular-momentum-based controller on Cassie, a 3D robot, and demonstrate high agility and robustness in experiments.

Causal discovery, the learning of causality in a data mining scenario, has been of strong scientific and theoretical interest as a starting point to identify "what causes what?" Contingent on assumptions, it is sometimes possible to identify an exact causal Directed Acyclic Graph (DAG), as opposed to a Markov equivalence class of graphs that gives ambiguity of causal directions. The focus of this paper is on one such case: a linear structural equation model with non-Gaussian noise, a model known as the Linear Non-Gaussian Acyclic Model (LiNGAM). Given a specified parametric noise model, we develop a novel sequential approach to estimate the causal ordering of a DAG. At each step of the procedure, only simple likelihood ratio scores are calculated on regression residuals to decide the next node to append to the current partial ordering. Under mild assumptions, the population version of our procedure provably identifies a true ordering of the underlying causal DAG. We provide extensive numerical evidence to demonstrate that our sequential procedure is scalable to cases with possibly thousands of nodes and works well for high-dimensional data. We also conduct an application to a single-cell gene expression dataset to demonstrate our estimation procedure.

One of the most studied models of SAT is random SAT. In this model, instances are composed from clauses chosen uniformly randomly and independently of each other. This model may be unsatisfactory in that it fails to describe various features of SAT instances, arising in real-world applications. Various modifications have been suggested to define models of industrial SAT. Here, we focus mainly on the aspect of community structure. Namely, here the set of variables consists of a number of disjoint communities, and clauses tend to consist of variables from the same community. Thus, we suggest a model of random industrial SAT, in which the central generalization with respect to random SAT is the additional community structure. There has been a lot of work on the satisfiability threshold of random $k$-SAT, starting with the calculation of the threshold of $2$-SAT, up to the recent result that the threshold exists for sufficiently large $k$. In this paper, we endeavor to study the satisfiability threshold for the proposed model of random industrial SAT. Our main result is that the threshold in this model tends to be smaller than its counterpart for random SAT. Moreover, under some conditions, this threshold even vanishes.

We provide a new theory for nodewise regression when the residuals from a fitted factor model are used. We apply our results to the analysis of the consistency of Sharpe ratio estimators when there are many assets in a portfolio. We allow for an increasing number of assets as well as time observations of the portfolio. Since the nodewise regression is not feasible due to the unknown nature of idiosyncratic errors, we provide a feasible-residual-based nodewise regression to estimate the precision matrix of errors which is consistent even when number of assets, p, exceeds the time span of the portfolio, n. In another new development, we also show that the precision matrix of returns can be estimated consistently, even with an increasing number of factors and p>n. We show that: (1) with p>n, the Sharpe ratio estimators are consistent in global minimum-variance and mean-variance portfolios; and (2) with p>n, the maximum Sharpe ratio estimator is consistent when the portfolio weights sum to one; and (3) with p<<n, the maximum-out-of-sample Sharpe ratio estimator is consistent.

This paper considers an endogenous binary response model with many weak instruments. We in the current paper employ a control function approach and a regularization scheme to obtain better estimation results for the endogenous binary response model in the presence of many weak instruments. Two consistent and asymptotically normally distributed estimators are provided, each of which is called a regularized conditional maximum likelihood estimator (RCMLE) and a regularized nonlinear least square estimator (RNLSE) respectively. Monte Carlo simulations show that the proposed estimators outperform the existing estimators when many weak instruments are present. We apply our estimation method to study the effect of family income on college completion.

Mutual information $I(X;Y)$ is a useful definition in information theory to estimate how much information the random variable $Y$ holds about the random variable $X$. One way to define the mutual information is by comparing the joint distribution of $X$ and $Y$ with the product of the marginals through the KL-divergence. If the two distributions are close to each other there will be almost no leakage of $X$ from $Y$ since the two variables are close to being independent. In the discrete setting the mutual information has the nice interpretation of how many bits $Y$ reveals about $X$ and if $I(X;Y)=H(X)$ (the Shannon entropy of $X$) then $X$ is completely revealed. However, in the continuous case we do not have the same reasoning. For instance the mutual information can be infinite in the continuous case. This fact enables us to try different metrics or divergences to define the mutual information. In this paper, we are evaluating different metrics or divergences such as Kullback-Liebler (KL) divergence, Wasserstein distance, Jensen-Shannon divergence and total variation distance to form alternatives to the mutual information in the continuous case. We deploy different methods to estimate or bound these metrics and divergences and evaluate their performances.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

The problem of Approximate Nearest Neighbor (ANN) search is fundamental in computer science and has benefited from significant progress in the past couple of decades. However, most work has been devoted to pointsets whereas complex shapes have not been sufficiently treated. Here, we focus on distance functions between discretized curves in Euclidean space: they appear in a wide range of applications, from road segments to time-series in general dimension. For $\ell_p$-products of Euclidean metrics, for any $p$, we design simple and efficient data structures for ANN, based on randomized projections, which are of independent interest. They serve to solve proximity problems under a notion of distance between discretized curves, which generalizes both discrete Fr\'echet and Dynamic Time Warping distances. These are the most popular and practical approaches to comparing such curves. We offer the first data structures and query algorithms for ANN with arbitrarily good approximation factor, at the expense of increasing space usage and preprocessing time over existing methods. Query time complexity is comparable or significantly improved by our algorithms, our algorithm is especially efficient when the length of the curves is bounded.

Recent studies have shown the vulnerability of reinforcement learning (RL) models in noisy settings. The sources of noises differ across scenarios. For instance, in practice, the observed reward channel is often subject to noise (e.g., when observed rewards are collected through sensors), and thus observed rewards may not be credible as a result. Also, in applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors. In this paper, we consider noisy RL problems where observed rewards by RL agents are generated with a reward confusion matrix. We call such observed rewards as perturbed rewards. We develop an unbiased reward estimator aided robust RL framework that enables RL agents to learn in noisy environments while observing only perturbed rewards. Our framework draws upon approaches for supervised learning with noisy data. The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 67.5% and 46.7% improvements in average on five Atari games, when the error rates are 10% and 30% respectively.

Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost. In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users' interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.

北京阿比特科技有限公司