亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sampling techniques are used in many fields, including design of experiments, image processing, and graphics. The techniques in each field are designed to meet the constraints specific to that field such as uniform coverage of the range of each dimension or random samples that are at least a certain distance apart from each other. When an application imposes new constraints, for example, by requiring samples in a non-rectangular domain or the addition of new samples to an existing set, a common solution is to modify the algorithm currently in use, often with less than satisfactory results. As an alternative, we propose the concept of intelligent sampling, where we devise algorithms specifically tailored to meet our sampling needs, either by creating new algorithms or by modifying suitable algorithms from other fields. Surprisingly, both qualitative and quantitative comparisons indicate that some relatively simple algorithms can be easily modified to meet the many sampling requirements of surrogate modeling, hyperparameter optimization, and data analysis; these algorithms outperform their more sophisticated counterparts currently in use, resulting in better use of time and computer resources.

相關內容

In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.

Identifying how dependence relationships vary across different conditions plays a significant role in many scientific investigations. For example, it is important for the comparison of biological systems to see if relationships between genomic features differ between cases and controls. In this paper, we seek to evaluate whether the relationships between two sets of variables is different across two conditions. Specifically, we assess: do two sets of high-dimensional variables have similar dependence relationships across two conditions?. We propose a new kernel-based test to capture the differential dependence. Specifically, the new test determines whether two measures that detect dependence relationships are similar or not under two conditions. We introduce the asymptotic permutation null distribution of the test statistic and it is shown to work well under finite samples such that the test is computationally efficient, making it easily applicable to analyze large data sets. We demonstrate through numerical studies that our proposed test has high power for detecting differential linear and non-linear relationships. The proposed method is implemented in an R package kerDAA.

Cyberbullying has become a pervasive issue based on the rise of cell phones and internet usage affecting individuals worldwide. This paper proposes an open-source intelligence pipeline using data from Twitter to track keywords relevant to cyberbullying in social media to build dashboards for law enforcement agents. We discuss the prevalence of cyberbullying on social media, factors that compel individuals to indulge in cyberbullying, and the legal implications of cyberbullying in different countries also highlight the lack of direction, resources, training, and support that law enforcement officers face in investigating cyberbullying cases. The proposed interventions for cyberbullying involve collective efforts from various stakeholders, including parents, law enforcement, social media platforms, educational institutions, educators, and researchers. Our research provides a framework for cyberbullying and provides a comprehensive view of the digital landscape for investigators to track and identify cyberbullies, their tactics, and patterns. An OSINT dashboard with real-time monitoring empowers law enforcement to swiftly take action, protect victims, and make significant strides toward creating a safer online environment.

The ever-growing use of wind energy makes necessary the optimization of turbine operations through pitch angle controllers and their maintenance with early fault detection. It is crucial to have accurate and robust models imitating the behavior of wind turbines, especially to predict the generated power as a function of the wind speed. Existing empirical and physics-based models have limitations in capturing the complex relations between the input variables and the power, aggravated by wind variability. Data-driven methods offer new opportunities to enhance wind turbine modeling of large datasets by improving accuracy and efficiency. In this study, we used physics-informed neural networks to reproduce historical data coming from 4 turbines in a wind farm, while imposing certain physical constraints to the model. The developed models for regression of the power, torque, and power coefficient as output variables showed great accuracy for both real data and physical equations governing the system. Lastly, introducing an efficient evidential layer provided uncertainty estimations of the predictions, proved to be consistent with the absolute error, and made possible the definition of a confidence interval in the power curve.

We study the fundamental problem of sampling independent events, called subset sampling. Specifically, consider a set of $n$ events $S=\{x_1, \ldots, x_n\}$, where each event $x_i$ has an associated probability $p(x_i)$. The subset sampling problem aims to sample a subset $T \subseteq S$, such that every $x_i$ is independently included in $S$ with probability $p_i$. A naive solution is to flip a coin for each event, which takes $O(n)$ time. However, the specific goal is to develop data structures that allow drawing a sample in time proportional to the expected output size $\mu=\sum_{i=1}^n p(x_i)$, which can be significantly smaller than $n$ in many applications. The subset sampling problem serves as an important building block in many tasks and has been the subject of various research for more than a decade. However, most of the existing subset sampling approaches are conducted in a static setting, where the events or their associated probability in set $S$ is not allowed to be changed over time. These algorithms incur either large query time or update time in a dynamic setting despite the ubiquitous time-evolving events with changing probability in real life. Therefore, it is a pressing need, but still, an open problem, to design efficient dynamic subset sampling algorithms. In this paper, we propose ODSS, the first optimal dynamic subset sampling algorithm. The expected query time and update time of ODSS are both optimal, matching the lower bounds of the subset sampling problem. We present a nontrivial theoretical analysis to demonstrate the superiority of ODSS. We also conduct comprehensive experiments to empirically evaluate the performance of ODSS. Moreover, we apply ODSS to a concrete application: influence maximization. We empirically show that our ODSS can improve the complexities of existing influence maximization algorithms on large real-world evolving social networks.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Dynamic neural network is an emerging research topic in deep learning. Compared to static models which have fixed computational graphs and parameters at the inference stage, dynamic networks can adapt their structures or parameters to different inputs, leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc. In this survey, we comprehensively review this rapidly developing area by dividing dynamic networks into three main categories: 1) instance-wise dynamic models that process each instance with data-dependent architectures or parameters; 2) spatial-wise dynamic networks that conduct adaptive computation with respect to different spatial locations of image data and 3) temporal-wise dynamic models that perform adaptive inference along the temporal dimension for sequential data such as videos and texts. The important research problems of dynamic networks, e.g., architecture design, decision making scheme, optimization technique and applications, are reviewed systematically. Finally, we discuss the open problems in this field together with interesting future research directions.

In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.

北京阿比特科技有限公司