亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diagnosing and managing a patient is a complex, sequential decision making process that requires physicians to obtain information -- such as which tests to perform -- and to act upon it. Recent advances in artificial intelligence (AI) and large language models (LLMs) promise to profoundly impact clinical care. However, current evaluation schemes overrely on static medical question-answering benchmarks, falling short on interactive decision-making that is required in real-life clinical work. Here, we present AgentClinic: a multimodal benchmark to evaluate LLMs in their ability to operate as agents in simulated clinical environments. In our benchmark, the doctor agent must uncover the patient's diagnosis through dialogue and active data collection. We present two open medical agent benchmarks: a multimodal image and dialogue environment, AgentClinic-NEJM, and a dialogue-only environment, AgentClinic-MedQA. We embed cognitive and implicit biases both in patient and doctor agents to emulate realistic interactions between biased agents. We find that introducing bias leads to large reductions in diagnostic accuracy of the doctor agents, as well as reduced compliance, confidence, and follow-up consultation willingness in patient agents. Evaluating a suite of state-of-the-art LLMs, we find that several models that excel in benchmarks like MedQA are performing poorly in AgentClinic-MedQA. We find that the LLM used in the patient agent is an important factor for performance in the AgentClinic benchmark. We show that both having limited interactions as well as too many interaction reduces diagnostic accuracy in doctor agents. The code and data for this work is publicly available at //AgentClinic.github.io.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 連結 · BASIC · 無監督 · Neural Networks ·
2024 年 7 月 12 日

Computational models of syntax are predominantly text-based. Here we propose that the most basic syntactic operations can be modeled directly from raw speech in a fully unsupervised way. We focus on one of the most ubiquitous and elementary properties of syntax -- concatenation. We introduce spontaneous concatenation: a phenomenon where convolutional neural networks (CNNs) trained on acoustic recordings of individual words start generating outputs with two or even three words concatenated without ever accessing data with multiple words in the input. We replicate this finding in several independently trained models with different hyperparameters and training data. Additionally, networks trained on two words learn to embed words into novel unobserved word combinations. To our knowledge, this is a previously unreported property of CNNs trained in the ciwGAN/fiwGAN setting on raw speech and has implications both for our understanding of how these architectures learn as well as for modeling syntax and its evolution from raw acoustic inputs.

Despite the wide usage of parametric point processes in theory and applications, a sound goodness-of-fit procedure to test whether a given parametric model is appropriate for data coming from a self-exciting point processes has been missing in the literature. In this work, we establish a bootstrap-based goodness-of-fit test which empirically works for all kinds of self-exciting point processes (and even beyond). In an infill-asymptotic setting we also prove its asymptotic consistency, albeit only in the particular case that the underlying point process is inhomogeneous Poisson.

Recent methods in modeling spatial extreme events have focused on utilizing parametric max-stable processes and their underlying dependence structure. In this work, we provide a unified approach for analyzing spatial extremes with little available data by estimating the distribution of model parameters or the spatial dependence directly. By employing recent developments in generative neural networks we predict a full sample-based distribution, allowing for direct assessment of uncertainty regarding model parameters or other parameter dependent functionals. We validate our method by fitting several simulated max-stable processes, showing a high accuracy of the approach, regarding parameter estimation, as well as uncertainty quantification. Additional robustness checks highlight the generalization and extrapolation capabilities of the model, while an application to precipitation extremes across Western Germany demonstrates the usability of our approach in real-world scenarios.

A common method for estimating the Hessian operator from random samples on a low-dimensional manifold involves locally fitting a quadratic polynomial. Although widely used, it is unclear if this estimator introduces bias, especially in complex manifolds with boundaries and nonuniform sampling. Rigorous theoretical guarantees of its asymptotic behavior have been lacking. We show that, under mild conditions, this estimator asymptotically converges to the Hessian operator, with nonuniform sampling and curvature effects proving negligible, even near boundaries. Our analysis framework simplifies the intensive computations required for direct analysis.

Graph combinatorial optimization problems are widely applicable and notoriously difficult to compute; for example, consider the traveling salesman or facility location problems. In this paper, we explore the feasibility of using convolutional neural networks (CNNs) on graph images to predict the cardinality of combinatorial properties of random graphs and networks. Specifically, we use image representations of modified adjacency matrices of random graphs as training samples for a CNN model to predict the stability number of random graphs; where the stability number is the cardinality of a maximum set of vertices containing no pairwise adjacency. Our approach demonstrates the potential for applying deep learning in combinatorial optimization problems.

Tandem repeats in proteins identification, classification and curation is a complex process that requires manual processing from experts, processing power and time. There are recent and relevant advances applying machine learning for protein structure prediction and repeat classification that are useful for this process. However, no service contemplates required databases and software to supplement researching on repeat proteins. In this publication we present Daisy, an integrated repeat protein curation web service. This service can process Protein Data Bank (PDB) and the AlphaFold Database entries for tandem repeats identification. In addition, it uses an algorithm to search a sequence against a library of Pfam hidden Markov model (HMM). Repeat classifications are associated with the identified families through RepeatsDB. This prediction is considered for enhancing the ReUPred algorithm execution and hastening the repeat units identification process. The service can also operate every associated PDB and AlphaFold structure with a UniProt proteome registry. Availability: The Daisy web service is freely accessible at daisy.bioinformatica.org.

Error control by means of a posteriori error estimators or indica-tors and adaptive discretizations, such as adaptive mesh refinement, have emerged in the late seventies. Since then, numerous theoretical developments and improvements have been made, as well as the first attempts to introduce them into real-life industrial applications. The present introductory chapter provides an overview of the subject, highlights some of the achievements to date and discusses possible perspectives.

We formulate and analyze a multiscale method for an elliptic problem with an oscillatory coefficient based on a skeletal (hybrid) formulation. More precisely, we employ hybrid discontinuous Galerkin approaches and combine them with the localized orthogonal decomposition methodology to obtain a coarse-scale skeletal method that effectively includes fine-scale information. This work is the first step in reliably merging hybrid skeletal formulations and localized orthogonal decomposition to unite the advantages of both strategies. Numerical experiments are presented to illustrate the theoretical findings.

Anomaly detection is a branch of data analysis and machine learning which aims at identifying observations that exhibit abnormal behaviour. Be it measurement errors, disease development, severe weather, production quality default(s) (items) or failed equipment, financial frauds or crisis events, their on-time identification, isolation and explanation constitute an important task in almost any branch of science and industry. By providing a robust ordering, data depth - statistical function that measures belongingness of any point of the space to a data set - becomes a particularly useful tool for detection of anomalies. Already known for its theoretical properties, data depth has undergone substantial computational developments in the last decade and particularly recent years, which has made it applicable for contemporary-sized problems of data analysis and machine learning. In this article, data depth is studied as an efficient anomaly detection tool, assigning abnormality labels to observations with lower depth values, in a multivariate setting. Practical questions of necessity and reasonability of invariances and shape of the depth function, its robustness and computational complexity, choice of the threshold are discussed. Illustrations include use-cases that underline advantageous behaviour of data depth in various settings.

Graph clustering is an important unsupervised learning technique for partitioning graphs with attributes and detecting communities. However, current methods struggle to accurately capture true community structures and intra-cluster relations, be computationally efficient, and identify smaller communities. We address these challenges by integrating coarsening and modularity maximization, effectively leveraging both adjacency and node features to enhance clustering accuracy. We propose a loss function incorporating log-determinant, smoothness, and modularity components using a block majorization-minimization technique, resulting in superior clustering outcomes. The method is theoretically consistent under the Degree-Corrected Stochastic Block Model (DC-SBM), ensuring asymptotic error-free performance and complete label recovery. Our provably convergent and time-efficient algorithm seamlessly integrates with graph neural networks (GNNs) and variational graph autoencoders (VGAEs) to learn enhanced node features and deliver exceptional clustering performance. Extensive experiments on benchmark datasets demonstrate its superiority over existing state-of-the-art methods for both attributed and non-attributed graphs.

北京阿比特科技有限公司