亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Modern SAT solvers are designed to handle problems expressed in Conjunctive Normal Form (CNF) so that non-CNF problems must be CNF-ized upfront, typically by using variants of either Tseitin or Plaisted and Greenbaum transformations. When passing from solving to enumeration, however, the capability of producing partial satisfying assignments that are as small as possible becomes crucial, which raises the question of whether such CNF encodings are also effective for enumeration. In this paper, we investigate both theoretically and empirically the effectiveness of CNF conversions for SAT enumeration. On the negative side, we show that: (i) Tseitin transformation prevents the solver from producing short partial assignments, thus seriously affecting the effectiveness of enumeration; (ii) Plaisted and Greenbaum transformation overcomes this problem only in part. On the positive side, we show that combining Plaisted and Greenbaum transformation with NNF preprocessing upfront -- which is typically not used in solving -- can fully overcome the problem and can drastically reduce both the number of partial assignments and the execution time.

相關內容

SAT是研究者關注命題可滿足性問題的理論與應用的第一次年度會議。除了簡單命題可滿足性外,它還包括布爾優化(如MaxSAT和偽布爾(PB)約束)、量化布爾公式(QBF)、可滿足性模理論(SMT)和約束規劃(CP),用于與布爾級推理有明確聯系的問題。官網鏈接: · ENJOY · CCS · 離散化 · Processing(編程語言) ·
2023 年 7 月 25 日

Undoing computations of a concurrent system is beneficial in many situations, e.g., in reversible debugging of multi-threaded programs and in recovery from errors due to optimistic execution in parallel discrete event simulation. A number of approaches have been proposed for how to reverse formal models of concurrent computation including process calculi such as CCS, languages like Erlang, prime event structures and occurrence nets. However it has not been settled what properties a reversible system should enjoy, nor how the various properties that have been suggested, such as the parabolic lemma and the causal-consistency property, are related. We contribute to a solution to these issues by using a generic labelled transition system equipped with a relation capturing whether transitions are independent to explore the implications between these properties. In particular, we show how they are derivable from a set of axioms. Our intention is that when establishing properties of some formalism it will be easier to verify the axioms rather than proving properties such as the parabolic lemma directly. We also introduce two new notions related to causal consistent reversibility, namely causal liveness and causal safety, stating, respectively, that an action can be undone if and only if it is independent from all the following ones. We show that both causal liveness and causal safety are derivable from our axioms.

Non-overlapping codes are block codes that have arisen in diverse contexts of computer science and biology. Applications typically require finding non-overlapping codes with large cardinalities, but the maximum size of non-overlapping codes has been determined only for cases where the codeword length divides the size of the alphabet, and for codes with codewords of length two or three. For all other alphabet sizes and codeword lengths no computationally feasible way to identify non-overlapping codes that attain the maximum size has been found to date. Herein we characterize maximal non-overlapping codes. We formulate the maximum non-overlapping code problem as an integer optimization problem and determine necessary conditions for optimality of a non-overlapping code. Moreover, we solve several instances of the optimization problem to show that the hitherto known constructions do not generate the optimal codes for many alphabet sizes and codeword lengths. We also evaluate the number of distinct maximum non-overlapping codes.

A new algorithm for regret minimization in online convex optimization is described. The regret of the algorithm after $T$ time periods is $O(\sqrt{T \log T})$ - which is the minimum possible up to a logarithmic term. In addition, the new algorithm is adaptive, in the sense that the regret bounds hold not only for the time periods $1,\ldots,T$ but also for every sub-interval $s,s+1,\ldots,t$. The running time of the algorithm matches that of newly introduced interior point algorithms for regret minimization: in $n$-dimensional space, during each iteration the new algorithm essentially solves a system of linear equations of order $n$, rather than solving some constrained convex optimization problem in $n$ dimensions and possibly many constraints.

Modern mainstream financial theory is underpinned by the efficient market hypothesis, which posits the rapid incorporation of relevant information into asset pricing. Limited prior studies in the operational research literature have investigated tests designed for random number generators to check for these informational efficiencies. Treating binary daily returns as a hardware random number generator analogue, tests of overlapping permutations have indicated that these time series feature idiosyncratic recurrent patterns. Contrary to prior studies, we split our analysis into two streams at the annual and company level, and investigate longer-term efficiency over a larger time frame for Nasdaq-listed public companies to diminish the effects of trading noise and allow the market to realistically digest new information. Our results demonstrate that information efficiency varies across years and reflects large-scale market impacts such as financial crises. We also show the proximity to results of a well-tested pseudo-random number generator, discuss the distinction between theoretical and practical market efficiency, and find that the statistical qualification of stock-separated returns in support of the efficient market hypothesis is dependent on the driving factor of small inefficient subsets that skew market assessments.

The recently introduced DeepONet operator-learning framework for PDE control is extended from the results for basic hyperbolic and parabolic PDEs to an advanced hyperbolic class that involves delays on both the state and the system output or input. The PDE backstepping design produces gain functions that are outputs of a nonlinear operator, mapping functions on a spatial domain into functions on a spatial domain, and where this gain-generating operator's inputs are the PDE's coefficients. The operator is approximated with a DeepONet neural network to a degree of accuracy that is provably arbitrarily tight. Once we produce this approximation-theoretic result in infinite dimension, with it we establish stability in closed loop under feedback that employs approximate gains. In addition to supplying such results under full-state feedback, we also develop DeepONet-approximated observers and output-feedback laws and prove their own stabilizing properties under neural operator approximations. With numerical simulations we illustrate the theoretical results and quantify the numerical effort savings, which are of two orders of magnitude, thanks to replacing the numerical PDE solving with the DeepONet.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司