亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study investigates the robustness of graph embedding methods for community detection in the face of network perturbations, specifically edge deletions. Graph embedding techniques, which represent nodes as low-dimensional vectors, are widely used for various graph machine learning tasks due to their ability to capture structural properties of networks effectively. However, the impact of perturbations on the performance of these methods remains relatively understudied. The research considers state-of-the-art graph embedding methods from two families: matrix factorization (e.g., LE, LLE, HOPE, M-NMF) and random walk-based (e.g., DeepWalk, LINE, node2vec). Through experiments conducted on both synthetic and real-world networks, the study reveals varying degrees of robustness within each family of graph embedding methods. The robustness is found to be influenced by factors such as network size, initial community partition strength, and the type of perturbation. Notably, node2vec and LLE consistently demonstrate higher robustness for community detection across different scenarios, including networks with degree and community size heterogeneity. These findings highlight the importance of selecting an appropriate graph embedding method based on the specific characteristics of the network and the task at hand, particularly in scenarios where robustness to perturbations is crucial.

相關內容

We present a novel, model-free, and data-driven methodology for controlling complex dynamical systems into previously unseen target states, including those with significantly different and complex dynamics. Leveraging a parameter-aware realization of next-generation reservoir computing, our approach accurately predicts system behavior in unobserved parameter regimes, enabling control over transitions to arbitrary target states. Crucially, this includes states with dynamics that differ fundamentally from known regimes, such as shifts from periodic to intermittent or chaotic behavior. The method's parameter-awareness facilitates non-stationary control, ensuring smooth transitions between states. By extending the applicability of machine learning-based control mechanisms to previously inaccessible target dynamics, this methodology opens the door to transformative new applications while maintaining exceptional efficiency. Our results highlight reservoir computing as a powerful alternative to traditional methods for dynamic system control.

We study the problem of constructing an estimator of the average treatment effect (ATE) with observational data. The celebrated doubly-robust, augmented-IPW (AIPW) estimator generally requires consistent estimation of both nuisance functions for standard root-n inference, and moreover that the product of the errors of the nuisances should shrink at a rate faster than $n^{-1/2}$. A recent strand of research has aimed to understand the extent to which the AIPW estimator can be improved upon (in a minimax sense). Under structural assumptions on the nuisance functions, the AIPW estimator is typically not minimax-optimal, and improvements can be made using higher-order influence functions (Robins et al, 2017). Conversely, without any assumptions on the nuisances beyond the mean-square-error rates at which they can be estimated, the rate achieved by the AIPW estimator is already optimal (Balakrishnan et al, 2023; Jin and Syrgkanis, 2024). We make three main contributions. First, we propose a new hybrid class of distributions that combine structural agnosticism regarding the nuisance function space with additional smoothness constraints. Second, we calculate minimax lower bounds for estimating the ATE in the new class, as well as in the pure structure-agnostic one. Third, we propose a new estimator of the ATE that enjoys doubly-robust asymptotic linearity; it can yield asymptotically valid Wald-type confidence intervals even when the propensity score or the outcome model is inconsistently estimated, or estimated at a slow rate. Under certain conditions, we show that its rate of convergence in the new class can be much faster than that achieved by the AIPW estimator and, in particular, matches the minimax lower bound rate, thereby establishing its optimality. Finally, we complement our theoretical findings with simulations.

We present here a large collection of harmonic and quadratic harmonic sums, that can be useful in applied questions, e.g., probabilistic ones. We find closed-form formulae, that we were not able to locate in the literature.

Biological neural networks seem qualitatively superior (e.g. in learning, flexibility, robustness) to current artificial like Multi-Layer Perceptron (MLP) or Kolmogorov-Arnold Network (KAN). Simultaneously, in contrast to them: biological have fundamentally multidirectional signal propagation \cite{axon}, also of probability distributions e.g. for uncertainty estimation, and are believed not being able to use standard backpropagation training \cite{backprop}. There are proposed novel artificial neurons based on HCR (Hierarchical Correlation Reconstruction) allowing to remove the above low level differences: with neurons containing local joint distribution model (of its connections), representing joint density on normalized variables as just linear combination of $(f_\mathbf{j})$ orthonormal polynomials: $\rho(\mathbf{x})=\sum_{\mathbf{j}\in B} a_\mathbf{j} f_\mathbf{j}(\mathbf{x})$ for $\mathbf{x} \in [0,1]^d$ and $B\subset \mathbb{N}^d$ some chosen basis. By various index summations of such $(a_\mathbf{j})_{\mathbf{j}\in B}$ tensor as neuron parameters, we get simple formulas for e.g. conditional expected values for propagation in any direction, like $E[x|y,z]$, $E[y|x]$, which degenerate to KAN-like parametrization if restricting to pairwise dependencies. Such HCR network can also propagate probability distributions (also joint) like $\rho(y,z|x)$. It also allows for additional training approaches, like direct $(a_\mathbf{j})$ estimation, through tensor decomposition, or more biologically plausible information bottleneck training: layers directly influencing only neighbors, optimizing content to maximize information about the next layer, and minimizing about the previous to remove noise, extract crucial information.

We prove sharp upper and lower bounds for the approximation of Sobolev functions by sums of multivariate ridge functions, i.e., functions of the form $\mathbb{R}^d \ni x \mapsto \sum_{k=1}^n h_k(A_k x) \in \mathbb{R}$ with $h_k : \mathbb{R}^\ell \to \mathbb{R}$ and $A_k \in \mathbb{R}^{\ell \times d}$. We show that the order of approximation asymptotically behaves as $n^{-r/(d-\ell)}$, where $r$ is the regularity of the Sobolev functions to be approximated. Our lower bound even holds when approximating $L^\infty$-Sobolev functions of regularity $r$ with error measured in $L^1$, while our upper bound applies to the approximation of $L^p$-Sobolev functions in $L^p$ for any $1 \leq p \leq \infty$. These bounds generalize well-known results about the approximation properties of univariate ridge functions to the multivariate case. Moreover, we use these bounds to obtain sharp asymptotic bounds for the approximation of Sobolev functions using generalized translation networks and complex-valued neural networks.

Ideally, all analyses of normally distributed data should include the full covariance information between all data points. In practice, the full covariance matrix between all data points is not always available. Either because a result was published without a covariance matrix, or because one tries to combine multiple results from separate publications. For simple hypothesis tests, it is possible to define robust test statistics that will behave conservatively in the presence on unknown correlations. For model parameter fits, one can inflate the variance by a factor to ensure that things remain conservative at least up to a chosen confidence level. This paper describes a class of robust test statistics for simple hypothesis tests, as well as an algorithm to determine the necessary inflation factor for model parameter fits and Goodness of Fit tests and composite hypothesis tests. It then presents some example applications of the methods to real neutrino interaction data and model comparisons.

Graph convolutional network (GCN) is a powerful model studied broadly in various graph structural data learning tasks. However, to mitigate the over-smoothing phenomenon, and deal with heterogeneous graph structural data, the design of GCN model remains a crucial issue to be investigated. In this paper, we propose a novel GCN called SStaGCN (Simplified stacking based GCN) by utilizing the ideas of stacking and aggregation, which is an adaptive general framework for tackling heterogeneous graph data. Specifically, we first use the base models of stacking to extract the node features of a graph. Subsequently, aggregation methods such as mean, attention and voting techniques are employed to further enhance the ability of node features extraction. Thereafter, the node features are considered as inputs and fed into vanilla GCN model. Furthermore, theoretical generalization bound analysis of the proposed model is explicitly given. Extensive experiments on $3$ public citation networks and another $3$ heterogeneous tabular data demonstrate the effectiveness and efficiency of the proposed approach over state-of-the-art GCNs. Notably, the proposed SStaGCN can efficiently mitigate the over-smoothing problem of GCN.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Most algorithms for representation learning and link prediction in relational data have been designed for static data. However, the data they are applied to usually evolves with time, such as friend graphs in social networks or user interactions with items in recommender systems. This is also the case for knowledge bases, which contain facts such as (US, has president, B. Obama, [2009-2017]) that are valid only at certain points in time. For the problem of link prediction under temporal constraints, i.e., answering queries such as (US, has president, ?, 2012), we propose a solution inspired by the canonical decomposition of tensors of order 4. We introduce new regularization schemes and present an extension of ComplEx (Trouillon et al., 2016) that achieves state-of-the-art performance. Additionally, we propose a new dataset for knowledge base completion constructed from Wikidata, larger than previous benchmarks by an order of magnitude, as a new reference for evaluating temporal and non-temporal link prediction methods.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司