亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stroke is a leading cause of disability and death. Effective treatment decisions require early and informative vascular imaging. 4D perfusion imaging is ideal but rarely available within the first hour after stroke, whereas plain CT and CTA usually are. Hence, we propose a framework to extract a predicted perfusion map (PPM) derived from CT and CTA images. In all eighteen patients, we found significantly high spatial similarity (with average Spearman's correlation = 0.7893) between our predicted perfusion map (PPM) and the T-max map derived from 4D-CTP. Voxelwise correlations between the PPM and National Institutes of Health Stroke Scale (NIHSS) subscores for L/R hand motor, gaze, and language on a large cohort of 2,110 subjects reliably mapped symptoms to expected infarct locations. Therefore our PPM could serve as an alternative for 4D perfusion imaging, if the latter is unavailable, to investigate blood perfusion in the first hours after hospital admission.

相關內容

It is well-known that decision-making problems from stochastic control can be formulated by means of a forward-backward stochastic differential equation (FBSDE). Recently, the authors of Ji et al. 2022 proposed an efficient deep learning algorithm based on the stochastic maximum principle (SMP). In this paper, we provide a convergence result for this deep SMP-BSDE algorithm and compare its performance with other existing methods. In particular, by adopting a strategy as in Han and Long 2020, we derive a-posteriori estimate, and show that the total approximation error can be bounded by the value of the loss functional and the discretization error. We present numerical examples for high-dimensional stochastic control problems, both in case of drift- and diffusion control, which showcase superior performance compared to existing algorithms.

Sensorized insoles provide a tool for gait studies and health monitoring during daily life. For users to accept such insoles they need to be comfortable and lightweight. Previous work has already demonstrated that estimation of ground reaction forces (GRFs) is possible with insoles. However, these are often assemblies of commercial components restricting design freedom and customization. Within this work, we investigate using four 3D-printed soft foam-like sensors to sensorize an insole. These sensors were combined with system identification of Hammerstein-Wiener models to estimate the 3D GRFs, which were compared to values from an instrumented treadmill as the golden standard. It was observed that the four sensors behaved in line with the expected change in pressure distribution during the gait cycle. In addition, the identified (personalized) Hammerstein-Wiener models showed the best estimation performance (on average RMS error 9.3%, R^2=0.85 and mean absolute error (MAE) 7%) of the vertical, mediolateral, and anteroposterior GRFs. Thereby showing that these sensors can estimate the resulting 3D force reasonably well. These results for nine participants were comparable to or outperformed other works that used commercial FSRs with machine learning. The identified models did decrease in estimation performance over time but stayed on average 11.35% RMS and 8.6% MAE after a week with the Hammerstein-Wiener model seeming consistent between days two and seven. These results show promise for using 3D-printed soft piezoresistive foam-like sensors with system identification to be a viable approach for applications that require softness, lightweight, and customization such as wearable (force) sensors.

Contraction coefficients give a quantitative strengthening of the data processing inequality. As such, they have many natural applications whenever closer analysis of information processing is required. However, it is often challenging to calculate these coefficients. As a remedy we discuss a quantum generalization of Doeblin coefficients. These give an efficiently computable upper bound on many contraction coefficients. We prove several properties and discuss generalizations and applications. In particular, we give additional stronger bounds. One especially for PPT channels and one for general channels based on a constraint relaxation. Additionally, we introduce reverse Doeblin coefficients that bound certain expansion coefficients.

Latent variable models serve as powerful tools to infer underlying dynamics from observed neural activity. However, due to the absence of ground truth data, prediction benchmarks are often employed as proxies. In this study, we reveal the limitations of the widely-used 'co-smoothing' prediction framework and propose an improved few-shot prediction approach that encourages more accurate latent dynamics. Utilizing a student-teacher setup with Hidden Markov Models, we demonstrate that the high co-smoothing model space can encompass models with arbitrary extraneous dynamics within their latent representations. To address this, we introduce a secondary metric -- a few-shot version of co-smoothing. This involves performing regression from the latent variables to held-out channels in the data using fewer trials. Our results indicate that among models with near-optimal co-smoothing, those with extraneous dynamics underperform in the few-shot co-smoothing compared to 'minimal' models devoid of such dynamics. We also provide analytical insights into the origin of this phenomenon. We further validate our findings on real neural data using two state-of-the-art methods: LFADS and STNDT. In the absence of ground truth, we suggest a proxy measure to quantify extraneous dynamics. By cross-decoding the latent variables of all model pairs with high co-smoothing, we identify models with minimal extraneous dynamics. We find a correlation between few-shot co-smoothing performance and this new measure. In summary, we present a novel prediction metric designed to yield latent variables that more accurately reflect the ground truth, offering a significant improvement for latent dynamics inference.

Pretrial risk assessment tools are used in jurisdictions across the country to assess the likelihood of "pretrial failure," the event where defendants either fail to appear for court or reoffend. Judicial officers, in turn, use these assessments to determine whether to release or detain defendants during trial. While algorithmic risk assessment tools were designed to predict pretrial failure with greater accuracy relative to judges, there is still concern that both risk assessment recommendations and pretrial decisions are biased against minority groups. In this paper, we develop methods to investigate the association between risk factors and pretrial failure, while simultaneously estimating misclassification rates of pretrial risk assessments and of judicial decisions as a function of defendant race. This approach adds to a growing literature that makes use of outcome misclassification methods to answer questions about fairness in pretrial decision-making. We give a detailed simulation study for our proposed methodology and apply these methods to data from the Virginia Department of Criminal Justice Services. We estimate that the VPRAI algorithm has near-perfect specificity, but its sensitivity differs by defendant race. Judicial decisions also display evidence of bias; we estimate wrongful detention rates of 39.7% and 51.4% among white and Black defendants, respectively.

The largest eigenvalue of the Hessian, or sharpness, of neural networks is a key quantity to understand their optimization dynamics. In this paper, we study the sharpness of deep linear networks for overdetermined univariate regression. Minimizers can have arbitrarily large sharpness, but not an arbitrarily small one. Indeed, we show a lower bound on the sharpness of minimizers, which grows linearly with depth. We then study the properties of the minimizer found by gradient flow, which is the limit of gradient descent with vanishing learning rate. We show an implicit regularization towards flat minima: the sharpness of the minimizer is no more than a constant times the lower bound. The constant depends on the condition number of the data covariance matrix, but not on width or depth. This result is proven both for a small-scale initialization and a residual initialization. Results of independent interest are shown in both cases. For small-scale initialization, we show that the learned weight matrices are approximately rank-one and that their singular vectors align. For residual initialization, convergence of the gradient flow for a Gaussian initialization of the residual network is proven. Numerical experiments illustrate our results and connect them to gradient descent with non-vanishing learning rate.

Reducing wealth inequality and increasing utility are critical issues. This study reveals the effects of redistribution and consumption morals on wealth inequality and utility. To this end, we present a novel approach that couples the dynamic model of capital, consumption, and utility in macroeconomics with the interaction model of joint business and redistribution in econophysics. With this approach, we calculate the capital (wealth), the utility based on consumption, and the Gini index of these inequality using redistribution and consumption thresholds as moral parameters. The results show that: under-redistribution and waste exacerbate inequality; conversely, over-redistribution and stinginess reduce utility; and a balanced moderate moral leads to achieve both reduced inequality and increased utility. These findings provide renewed economic and numerical support for the moral importance known from philosophy, anthropology, and religion. The revival of redistribution and consumption morals should promote the transformation to a human mutual-aid economy, as indicated by philosopher and anthropologist, instead of the capitalist economy that has produced the current inequality. The practical challenge is to implement bottom-up social business, on a foothold of worker coops and platform cooperatives as a community against the state and the market, with moral consensus and its operation.

We marshall the arguments for preferring Bayesian hypothesis testing and confidence sets to frequentist ones. We define admissible solutions to inference problems, noting that Bayesian solutions are admissible. We give seven weaker common-sense criteria for solutions to inference problems, all failed by these frequentist methods but satisfied by any admissible method. We note that pseudo-Bayesian methods made by handicapping Bayesian methods to satisfy criteria on type I error rate makes them frequentist not Bayesian in nature. We give five examples showing the differences between Bayesian and frequentist methods; the first requiring little calculus, the second showing in abstract what is wrong with these frequentist methods, the third to illustrate information conservation, the fourth to show that the same problems arise in everyday statistical problems, and the fifth to illustrate how on some real-life inference problems Bayesian methods require less data than fixed sample-size (resp. pseudo-Bayesian) frequentist hypothesis testing by factors exceeding 3000 (resp 300) without recourse to informative priors. To address the issue of different parties with opposing interests reaching agreement on a prior, we illustrate the beneficial effects of a Bayesian "Let the data decide" policy both on results under a wide variety of conditions and on motivation to reach a common prior by consent. We show that in general the frequentist confidence level contains less relevant Shannon information than the Bayesian posterior, and give an example where no deterministic frequentist critical regions give any relevant information even though the Bayesian posterior contains up to the maximum possible amount. In contrast use of the Bayesian prior allows construction of non-deterministic critical regions for which the Bayesian posterior can be recovered from the frequentist confidence.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司