亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Visual Question Answering (VQA) entails answering questions about images. We introduce the first VQA dataset in which all contents originate from an authentic use case. Sourced from online question answering community forums, we call it VQAonline. We then characterize our dataset and how it relates to eight other VQA datasets. Observing that answers in our dataset tend to be much longer (e.g., with a mean of 173 words) and thus incompatible with standard VQA evaluation metrics, we next analyze which of the six popular metrics for longer text evaluation align best with human judgments. We then use the best-suited metrics to evaluate six state-of-the-art vision and language foundation models on VQAonline and reveal where they struggle most. The dataset can be found publicly at //vqaonline.github.io/.

相關內容

視覺問答(Visual Question Answering,VQA),是一種涉及計算機視覺和自然語言處理的學習任務。這一任務的定義如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為中文:一個VQA系統以一張圖片和一個關于這張圖片形式自由、開放式的自然語言問題作為輸入,以生成一條自然語言答案作為輸出。簡單來說,VQA就是給定的圖片進行問答。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model's performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.

We introduce Clifford Group Equivariant Simplicial Message Passing Networks, a method for steerable E(n)-equivariant message passing on simplicial complexes. Our method integrates the expressivity of Clifford group-equivariant layers with simplicial message passing, which is topologically more intricate than regular graph message passing. Clifford algebras include higher-order objects such as bivectors and trivectors, which express geometric features (e.g., areas, volumes) derived from vectors. Using this knowledge, we represent simplex features through geometric products of their vertices. To achieve efficient simplicial message passing, we share the parameters of the message network across different dimensions. Additionally, we restrict the final message to an aggregation of the incoming messages from different dimensions, leading to what we term shared simplicial message passing. Experimental results show that our method is able to outperform both equivariant and simplicial graph neural networks on a variety of geometric tasks.

Deep Reinforcement Learning is widely used for aligning Large Language Models (LLM) with human preference. However, the conventional reward modelling has predominantly depended on human annotations provided by a select cohort of individuals. Such dependence may unintentionally result in models that are skewed to reflect the inclinations of these annotators, thereby failing to represent the expectations of the wider population adequately. In this paper, we introduce the Distributional Preference Reward Model (DPRM), a simple yet effective framework to align large language models with a diverse set of human preferences. To this end, we characterize the preferences by a beta distribution, which can dynamically adapt to fluctuations in preference trends. On top of that, we design an optimal-transportation-based loss to calibrate DPRM to align with the preference distribution. Finally, the expected reward is utilized to fine-tune an LLM policy to generate responses favoured by the population. Our experiments show that DPRM significantly enhances the alignment of LLMs with population preference, yielding more accurate, unbiased, and contextually appropriate responses.

To address the issue of feature descriptors being ineffective in representing grayscale feature information when images undergo high affine transformations, leading to a rapid decline in feature matching accuracy, this paper proposes a region feature descriptor based on simulating affine transformations using classification. The proposed method initially categorizes images with different affine degrees to simulate affine transformations and generate a new set of images. Subsequently, it calculates neighborhood information for feature points on this new image set. Finally, the descriptor is generated by combining the grayscale histogram of the maximum stable extremal region to which the feature point belongs and the normalized position relative to the grayscale centroid of the feature point's region. Experimental results, comparing feature matching metrics under affine transformation scenarios, demonstrate that the proposed descriptor exhibits higher precision and robustness compared to existing classical descriptors. Additionally, it shows robustness when integrated with other descriptors.

Learned image compression has gained widespread popularity for their efficiency in achieving ultra-low bit-rates. Yet, images containing substantial textual content, particularly screen-content images (SCI), often suffers from text distortion at such compressed levels. To address this, we propose to minimize a novel text logit loss designed to quantify the disparity in text between the original and reconstructed images, thereby improving the perceptual quality of the reconstructed text. Through rigorous experimentation across diverse datasets and employing state-of-the-art algorithms, our findings reveal significant enhancements in the quality of reconstructed text upon integration of the proposed loss function with appropriate weighting. Notably, we achieve a Bjontegaard delta (BD) rate of -32.64% for Character Error Rate (CER) and -28.03% for Word Error Rate (WER) on average by applying the text logit loss for two screenshot datasets. Additionally, we present quantitative metrics tailored for evaluating text quality in image compression tasks. Our findings underscore the efficacy and potential applicability of our proposed text logit loss function across various text-aware image compression contexts.

Noise removal in the standard RGB (sRGB) space remains a challenging task, in that the noise statistics of real-world images can be different in R, G and B channels. In fact, the green channel usually has twice the sampling rate in raw data and a higher signal-to-noise ratio than red/blue ones. However, the green channel prior (GCP) is often understated or ignored in color image denoising since many existing approaches mainly focus on modeling the relationship among image patches. In this paper, we propose a simple and effective one step GCP-based image denoising (GCP-ID) method, which aims to exploit the GCP for denoising in the sRGB space by integrating it into the classic nonlocal transform domain denoising framework. Briefly, we first take advantage of the green channel to guide the search of similar patches, which improves the patch search quality and encourages sparsity in the transform domain. Then we reformulate RGB patches into RGGB arrays to explicitly characterize the density of green samples. The block circulant representation is utilized to capture the cross-channel correlation and the channel redundancy. Experiments on both synthetic and real-world datasets demonstrate the competitive performance of the proposed GCP-ID method for the color image and video denoising tasks. The code is available at github.com/ZhaomingKong/GCP-ID.

We propose a method for generating spurious features by leveraging large-scale text-to-image diffusion models. Although the previous work detects spurious features in a large-scale dataset like ImageNet and introduces Spurious ImageNet, we found that not all spurious images are spurious across different classifiers. Although spurious images help measure the reliance of a classifier, filtering many images from the Internet to find more spurious features is time-consuming. To this end, we utilize an existing approach of personalizing large-scale text-to-image diffusion models with available discovered spurious images and propose a new spurious feature similarity loss based on neural features of an adversarially robust model. Precisely, we fine-tune Stable Diffusion with several reference images from Spurious ImageNet with a modified objective incorporating the proposed spurious-feature similarity loss. Experiment results show that our method can generate spurious images that are consistently spurious across different classifiers. Moreover, the generated spurious images are visually similar to reference images from Spurious ImageNet.

This paper shows that masked autoencoders (MAE) are scalable self-supervised learners for computer vision. Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels. It is based on two core designs. First, we develop an asymmetric encoder-decoder architecture, with an encoder that operates only on the visible subset of patches (without mask tokens), along with a lightweight decoder that reconstructs the original image from the latent representation and mask tokens. Second, we find that masking a high proportion of the input image, e.g., 75%, yields a nontrivial and meaningful self-supervisory task. Coupling these two designs enables us to train large models efficiently and effectively: we accelerate training (by 3x or more) and improve accuracy. Our scalable approach allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data. Transfer performance in downstream tasks outperforms supervised pre-training and shows promising scaling behavior.

Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator's performance. Such techniques pose the risk of getting trapped in local minima. We propose a self consistency (SC) score to quantify annotator consistency using low level image features. SSL is used to predict missing annotations by considering global features and local image consistency. The SC score also serves as the penalty cost in a second order Markov random field (MRF) cost function optimized using graph cuts to derive the final consensus label. Graph cut obtains a global maximum without an iterative procedure. Experimental results on synthetic images, real data of Crohn's disease patients and retinal images show our final segmentation to be accurate and more consistent than competing methods.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司