亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

IPv6 is a fundamentally different Internet Protocol than IPv4, and IPv6-only networks cannot, by default, communicate with the IPv4 Internet. This lack of interoperability necessitates complex mechanisms for incremental deployment and bridging networks so that non-dual-stack systems can interact with the whole Internet. NAT64 is one such bridging mechanism by which a network allows IPv6-only clients to connect to the entire Internet, leveraging DNS to identify IPv4-only networks, inject IPv6 response addresses pointing to an internal gateway, and seamlessly translate connections. To date, our understanding of NAT64 deployments is limited; what little information exists is largely qualitative, taken from mailing lists and informal discussions. In this work, we present a first look at the active measurement of NAT64 deployment on the Internet focused on deployment prevalence, configuration, and security. We seek to measure NAT64 via two distinct large-scale measurements: 1) open resolvers on the Internet, and 2) client measurements from RIPE Atlas. For both datasets, we broadly find that despite substantial anecdotal reports of NAT64 deployment, measurable deployments are exceedingly sparse. While our measurements do not preclude the large-scale deployment of NAT64, they do point to substantial challenges in measuring deployments with our existing best-known methods. Finally, we also identify problems in NAT64 deployments, with gateways not following the RFC specification and also posing potential security risks.

相關內容

With the rapid advancement of UAV technology, the problem of UAV coalition formation has become a hotspot. Therefore, designing task-driven multi-UAV coalition formation mechanism has become a challenging problem. However, existing coalition formation mechanisms suffer from low relevance between UAVs and task requirements, resulting in overall low coalition utility and unstable coalition structures. To address these problems, this paper proposed a novel multi-UAV coalition network collaborative task completion model, considering both coalition work capacity and task-requirement relationships. This model stimulated the formation of coalitions that match task requirements by using a revenue function based on the coalition's revenue threshold. Subsequently, an algorithm for coalition formation based on marginal utility was proposed. Specifically, the algorithm utilized Shapley value to achieve fair utility distribution within the coalition, evaluated coalition values based on marginal utility preference order, and achieved stable coalition partition through a limited number of iterations. Additionally, we theoretically proved that this algorithm has Nash equilibrium solution. Finally, experimental results demonstrated that the proposed algorithm, compared to currently classical algorithms, not only forms more stable coalitions but also further enhances the overall utility of coalitions effectively.

Recent years have witnessed significant advancement in face recognition (FR) techniques, with their applications widely spread in people's lives and security-sensitive areas. There is a growing need for reliable interpretations of decisions of such systems. Existing studies relying on various mechanisms have investigated the usage of saliency maps as an explanation approach, but suffer from different limitations. This paper first explores the spatial relationship between face image and its deep representation via gradient backpropagation. Then a new explanation approach FGGB has been conceived, which provides precise and insightful similarity and dissimilarity saliency maps to explain the "Accept" and "Reject" decision of an FR system. Extensive visual presentation and quantitative measurement have shown that FGGB achieves superior performance in both similarity and dissimilarity maps when compared to current state-of-the-art explainable face verification approaches.

In this work, we consider the general problem of constructing a neural network surrogate model using multi-fidelity information. Motivated by rigorous error and complexity estimates for ReLU neural networks, given an inexpensive low-fidelity and an expensive high-fidelity computational model, we present a residual multi-fidelity computational framework that formulates the correlation between models as a residual function, a possibly non-linear mapping between 1) the shared input space of the models together with the low-fidelity model output and 2) the discrepancy between the two model outputs. To accomplish this, we train two neural networks to work in concert. The first network learns the residual function on a small set of high-fidelity and low-fidelity data. Once trained, this network is used to generate additional synthetic high-fidelity data, which is used in the training of a second network. This second network, once trained, acts as our surrogate for the high-fidelity quantity of interest. We present three numerical examples to demonstrate the power of the proposed framework. In particular, we show that dramatic savings in computational cost may be achieved when the output predictions are desired to be accurate within small tolerances.

While convolutional neural networks (CNNs) have achieved success in computer vision tasks, it is vulnerable to backdoor attacks. Such attacks could mislead the victim model to make attacker-chosen prediction with a specific trigger pattern. Until now, the trigger injection of existing attacks is mainly limited to spatial domain. Recent works take advantage of perceptual properties of planting specific patterns in the frequency domain, which only reflect indistinguishable pixel-wise perturbations in pixel domain. However, in the black-box setup, the inaccessibility of training process often renders more complex trigger designs. Existing frequency attacks simply handcraft the magnitude of spectrum, introducing anomaly frequency disparities between clean and poisoned data and taking risks of being removed by image processing operations (such as lossy compression and filtering). In this paper, we propose a robust low-frequency black-box backdoor attack (LFBA), which minimally perturbs low-frequency components of frequency spectrum and maintains the perceptual similarity in spatial space simultaneously. The key insight of our attack restrict the search for the optimal trigger to low-frequency region that can achieve high attack effectiveness, robustness against image transformation defenses and stealthiness in dual space. We utilize simulated annealing (SA), a form of evolutionary algorithm, to optimize the properties of frequency trigger including the number of manipulated frequency bands and the perturbation of each frequency component, without relying on the knowledge from the victim classifier. Extensive experiments on real-world datasets verify the effectiveness and robustness of LFBA against image processing operations and the state-of-the-art backdoor defenses, as well as its inherent stealthiness in both spatial and frequency space, making it resilient against frequency inspection.

Document-Level Event Argument Extraction (DocEAE) is an extremely difficult information extraction problem -- with significant limitations in low-resource cross-domain settings. To address this problem, we introduce Mad Lib Aug (MLA), a novel generative DocEAE data augmentation framework. Our approach leverages the intuition that Mad Libs, which are categorically masked documents used as a part of a popular game, can be generated and solved by LLMs to produce data for DocEAE. Using MLA, we achieve a 2.6-point average improvement in overall F1 score. Moreover, this approach achieves a 3.9 and 5.2 point average increase in zero and few-shot event roles compared to augmentation-free baselines across all experiments. To better facilitate analysis of cross-domain DocEAE, we additionally introduce a new metric, Role-Depth F1 (RDF1), which uses statistical depth to identify roles in the target domain which are semantic outliers with respect to roles observed in the source domain. Our experiments show that MLA augmentation can boost RDF1 performance by an average of 5.85 points compared to non-augmented datasets.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Data transmission between two or more digital devices in industry and government demands secure and agile technology. Digital information distribution often requires deployment of Internet of Things (IoT) devices and Data Fusion techniques which have also gained popularity in both, civilian and military environments, such as, emergence of Smart Cities and Internet of Battlefield Things (IoBT). This usually requires capturing and consolidating data from multiple sources. Because datasets do not necessarily originate from identical sensors, fused data typically results in a complex Big Data problem. Due to potentially sensitive nature of IoT datasets, Blockchain technology is used to facilitate secure sharing of IoT datasets, which allows digital information to be distributed, but not copied. However, blockchain has several limitations related to complexity, scalability, and excessive energy consumption. We propose an approach to hide information (sensor signal) by transforming it to an image or an audio signal. In one of the latest attempts to the military modernization, we investigate sensor fusion approach by investigating the challenges of enabling an intelligent identification and detection operation and demonstrates the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application for specific hand gesture alert system from wearable devices.

It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks.

Approaches based on deep neural networks have achieved striking performance when testing data and training data share similar distribution, but can significantly fail otherwise. Therefore, eliminating the impact of distribution shifts between training and testing data is crucial for building performance-promising deep models. Conventional methods assume either the known heterogeneity of training data (e.g. domain labels) or the approximately equal capacities of different domains. In this paper, we consider a more challenging case where neither of the above assumptions holds. We propose to address this problem by removing the dependencies between features via learning weights for training samples, which helps deep models get rid of spurious correlations and, in turn, concentrate more on the true connection between discriminative features and labels. Extensive experiments clearly demonstrate the effectiveness of our method on multiple distribution generalization benchmarks compared with state-of-the-art counterparts. Through extensive experiments on distribution generalization benchmarks including PACS, VLCS, MNIST-M, and NICO, we show the effectiveness of our method compared with state-of-the-art counterparts.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司