This paper examines the extent to which large language models (LLMs) have developed higher-order theory of mind (ToM); the human ability to reason about multiple mental and emotional states in a recursive manner (e.g. I think that you believe that she knows). This paper builds on prior work by introducing a handwritten test suite -- Multi-Order Theory of Mind Q&A -- and using it to compare the performance of five LLMs to a newly gathered adult human benchmark. We find that GPT-4 and Flan-PaLM reach adult-level and near adult-level performance on ToM tasks overall, and that GPT-4 exceeds adult performance on 6th order inferences. Our results suggest that there is an interplay between model size and finetuning for the realisation of ToM abilities, and that the best-performing LLMs have developed a generalised capacity for ToM. Given the role that higher-order ToM plays in a wide range of cooperative and competitive human behaviours, these findings have significant implications for user-facing LLM applications.
Despite the wide usage of parametric point processes in theory and applications, a sound goodness-of-fit procedure to test whether a given parametric model is appropriate for data coming from a self-exciting point processes has been missing in the literature. In this work, we establish a bootstrap-based goodness-of-fit test which empirically works for all kinds of self-exciting point processes (and even beyond). In an infill-asymptotic setting we also prove its asymptotic consistency, albeit only in the particular case that the underlying point process is inhomogeneous Poisson.
Deep neural networks (DNNs) have demonstrated remarkable empirical performance in large-scale supervised learning problems, particularly in scenarios where both the sample size $n$ and the dimension of covariates $p$ are large. This study delves into the application of DNNs across a wide spectrum of intricate causal inference tasks, where direct estimation falls short and necessitates multi-stage learning. Examples include estimating the conditional average treatment effect and dynamic treatment effect. In this framework, DNNs are constructed sequentially, with subsequent stages building upon preceding ones. To mitigate the impact of estimation errors from early stages on subsequent ones, we integrate DNNs in a doubly robust manner. In contrast to previous research, our study offers theoretical assurances regarding the effectiveness of DNNs in settings where the dimensionality $p$ expands with the sample size. These findings are significant independently and extend to degenerate single-stage learning problems.
The homogenization procedure developed here is conducted on a laminate with periodic space-time modulation on the fine scale: at leading order, this modulation creates convection in the low-wavelength regime if both parameters are modulated. However, if only one parameter is modulated, which is more realistic, this convective term disappears and one recovers a standard diffusion equation with effective homogeneous parameters; this does not describe the non-reciprocity and the propagation of the field observed from exact dispersion diagrams. This inconsistency is corrected here by considering second-order homogenization which results in a non-reciprocal propagation term that is proved to be non-zero for any laminate and verified via numerical simulation. The same methodology is also applied to the case when the density is modulated in the heat equation, leading therefore to a corrective advective term which cancels out non-reciprocity at the leading order but not at the second order.
Neural radiance fields (NeRFs) are a deep learning technique that can generate novel views of 3D scenes using sparse 2D images from different viewing directions and camera poses. As an extension of conventional NeRFs in underwater environment, where light can get absorbed and scattered by water, SeaThru-NeRF was proposed to separate the clean appearance and geometric structure of underwater scene from the effects of the scattering medium. Since the quality of the appearance and structure of underwater scenes is crucial for downstream tasks such as underwater infrastructure inspection, the reliability of the 3D reconstruction model should be considered and evaluated. Nonetheless, owing to the lack of ability to quantify uncertainty in 3D reconstruction of underwater scenes under natural ambient illumination, the practical deployment of NeRFs in unmanned autonomous underwater navigation is limited. To address this issue, we introduce a spatial perturbation field D_omega based on Bayes' rays in SeaThru-NeRF and perform Laplace approximation to obtain a Gaussian distribution N(0,Sigma) of the parameters omega, where the diagonal elements of Sigma correspond to the uncertainty at each spatial location. We also employ a simple thresholding method to remove artifacts from the rendered results of underwater scenes. Numerical experiments are provided to demonstrate the effectiveness of this approach.
We formulate and analyze a multiscale method for an elliptic problem with an oscillatory coefficient based on a skeletal (hybrid) formulation. More precisely, we employ hybrid discontinuous Galerkin approaches and combine them with the localized orthogonal decomposition methodology to obtain a coarse-scale skeletal method that effectively includes fine-scale information. This work is the first step in reliably merging hybrid skeletal formulations and localized orthogonal decomposition to unite the advantages of both strategies. Numerical experiments are presented to illustrate the theoretical findings.
The brains of all bilaterally symmetric animals on Earth are divided into left and right hemispheres. The anatomy and functionality of the hemispheres have a large degree of overlap, but there are asymmetries, and they specialise in possesses different attributes. Other authors have used computational models to mimic hemispheric asymmetries with a focus on reproducing human data on semantic and visual processing tasks. We took a different approach and aimed to understand how dual hemispheres in a bilateral architecture interact to perform well in a given task. We propose a bilateral artificial neural network that imitates lateralisation observed in nature: that the left hemisphere specialises in local features and the right in global features. We used different training objectives to achieve the desired specialisation and tested it on an image classification task with two different CNN backbones: ResNet and VGG. Our analysis found that the hemispheres represent complementary features that are exploited by a network head that implements a type of weighted attention. The bilateral architecture outperformed a range of baselines of similar representational capacity that do not exploit differential specialisation, with the exception of a conventional ensemble of unilateral networks trained on dual training objectives for local and global features. The results demonstrate the efficacy of bilateralism, contribute to the discussion of bilateralism in biological brains, and the principle may serve as an inductive bias for new AI systems.
Artificial Intelligence (AI) is revolutionizing biodiversity research by enabling advanced data analysis, species identification, and habitats monitoring, thereby enhancing conservation efforts. Ensuring reproducibility in AI-driven biodiversity research is crucial for fostering transparency, verifying results, and promoting the credibility of ecological findings.This study investigates the reproducibility of deep learning (DL) methods within the biodiversity domain. We design a methodology for evaluating the reproducibility of biodiversity-related publications that employ DL techniques across three stages. We define ten variables essential for method reproducibility, divided into four categories: resource requirements, methodological information, uncontrolled randomness, and statistical considerations. These categories subsequently serve as the basis for defining different levels of reproducibility. We manually extract the availability of these variables from a curated dataset comprising 61 publications identified using the keywords provided by biodiversity experts. Our study shows that the dataset is shared in 47% of the publications; however, a significant number of the publications lack comprehensive information on deep learning methods, including details regarding randomness.
In this paper, we introduce the finite difference weighted essentially non-oscillatory (WENO) scheme based on the neural network for hyperbolic conservation laws. We employ the supervised learning and design two loss functions, one with the mean squared error and the other with the mean squared logarithmic error, where the WENO3-JS weights are computed as the labels. Each loss function consists of two components where the first component compares the difference between the weights from the neural network and WENO3-JS weights, while the second component matches the output weights of the neural network and the linear weights. The former of the loss function enforces the neural network to follow the WENO properties, implying that there is no need for the post-processing layer. Additionally the latter leads to better performance around discontinuities. As a neural network structure, we choose the shallow neural network (SNN) for computational efficiency with the Delta layer consisting of the normalized undivided differences. These constructed WENO3-SNN schemes show the outperformed results in one-dimensional examples and improved behavior in two-dimensional examples, compared with the simulations from WENO3-JS and WENO3-Z.
For robots to interact socially, they must interpret human intentions and anticipate their potential outcomes accurately. This is particularly important for social robots designed for human care, which may face potentially dangerous situations for people, such as unseen obstacles in their way, that should be avoided. This paper explores the Artificial Theory of Mind (ATM) approach to inferring and interpreting human intentions. We propose an algorithm that detects risky situations for humans, selecting a robot action that removes the danger in real time. We use the simulation-based approach to ATM and adopt the 'like-me' policy to assign intentions and actions to people. Using this strategy, the robot can detect and act with a high rate of success under time-constrained situations. The algorithm has been implemented as part of an existing robotics cognitive architecture and tested in simulation scenarios. Three experiments have been conducted to test the implementation's robustness, precision and real-time response, including a simulated scenario, a human-in-the-loop hybrid configuration and a real-world scenario.
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.