亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In software development, formal program specifications play a crucial role in various stages. However, manually crafting formal program specifications is rather difficult, making the job time-consuming and labor-intensive. Moreover, it is even more challenging to write specifications that correctly and comprehensively describe the semantics of complex programs. To reduce the burden on software developers, automated specification generation methods have emerged. However, existing methods usually rely on predefined templates or grammar, making them struggle to accurately describe the behavior and functionality of complex real-world programs. To tackle this challenge, we introduce SpecGen, a novel technique for formal program specification generation based on Large Language Models. Our key insight is to overcome the limitations of existing methods by leveraging the code comprehension capability of LLMs. The process of SpecGen consists of two phases. The first phase employs a conversational approach that guides the LLM to generate appropriate specifications for a given program. The second phase, designed for where the LLM fails to generate correct specifications, applies four mutation operators to the model-generated specifications and selects verifiable specifications from the mutated ones through a novel heuristic selection strategy by assigning different weights of variants in an efficient manner. To evaluate the performance of SpecGen, we manually construct a dataset containing 120 test cases. Our experimental results demonstrate that SpecGen succeeds in generating verifiable specifications for 100 out of 120 programs, outperforming the existing purely LLM-based approaches and conventional specification generation tools. Further investigations on the quality of generated specifications indicate that SpecGen can comprehensively articulate the behaviors of the input program.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

Despite achieving rapid developments and with widespread applications, Large Vision-Language Models (LVLMs) confront a serious challenge of being prone to generating hallucinations. An over-reliance on linguistic priors has been identified as a key factor leading to these hallucinations. In this paper, we propose to alleviate this problem by introducing a novel image-biased decoding (IBD) technique. Our method derives the next-token probability distribution by contrasting predictions from a conventional LVLM with those of an image-biased LVLM, thereby amplifying the correct information highly correlated with image content while mitigating the hallucinatory errors caused by excessive dependence on text. We further conduct a comprehensive statistical analysis to validate the reliability of our method, and design an adaptive adjustment strategy to achieve robust and flexible handling under varying conditions. Experimental results across multiple evaluation metrics verify that our method, despite not requiring additional training data and only with a minimal increase in model parameters, can significantly reduce hallucinations in LVLMs and enhance the truthfulness of the generated response.

Recent advancements in foundation models have yielded impressive performance across a wide range of tasks. Meanwhile, for specific applications, practitioners have been developing specialized application models. To enjoy the benefits of both kinds of models, one natural path is to transfer the knowledge in foundation models into specialized application models, which are generally more efficient for serving. Techniques from knowledge distillation may be applied here, where the application model learns to mimic the foundation model. However, specialized application models and foundation models have substantial gaps in capacity, employing distinct architectures, using different input features from different modalities, and being optimized on different distributions. These differences in model characteristics lead to significant challenges for distillation methods. In this work, we propose creating a teaching committee comprising both foundation model teachers and complementary teachers. Complementary teachers possess model characteristics akin to the student's, aiming to bridge the gap between the foundation model and specialized application models for a smoother knowledge transfer. Further, to accommodate the dissimilarity among the teachers in the committee, we introduce DiverseDistill, which allows the student to understand the expertise of each teacher and extract task knowledge. Our evaluations demonstrate that adding complementary teachers enhances student performance. Finally, DiverseDistill consistently outperforms baseline distillation methods, regardless of the teacher choices, resulting in significantly improved student performance.

Generative AI models are increasingly powering software applications, offering the capability to produce expressive content across varied contexts. However, unlike previous iterations of human-AI design, the emerging design process for generative capabilities primarily hinges on prompt engineering strategies. Given this fundamental shift in approach, our work aims to understand how collaborative software teams set up and apply design guidelines and values, iteratively prototype prompts, and evaluate prompts to achieve desired outcomes. We conducted design studies with 39 industry professionals, including designers, software engineers, and product managers. Our findings reveal a content-centric prototyping approach in which teams begin with the content they want to generate, then identify specific attributes, constraints, and values, and explore methods to give users the ability to influence and interact with those attributes. Based on associated challenges, such as the lack of model interpretability and overfitting the design to examples, we outline considerations for generative AI prototyping.

By simply composing prompts, developers can prototype novel generative applications with Large Language Models (LLMs). To refine prototypes into products, however, developers must iteratively revise prompts by evaluating outputs to diagnose weaknesses. Formative interviews (N=8) revealed that developers invest significant effort in manually evaluating outputs as they assess context-specific and subjective criteria. We present EvalLM, an interactive system for iteratively refining prompts by evaluating multiple outputs on user-defined criteria. By describing criteria in natural language, users can employ the system's LLM-based evaluator to get an overview of where prompts excel or fail, and improve these based on the evaluator's feedback. A comparative study (N=12) showed that EvalLM, when compared to manual evaluation, helped participants compose more diverse criteria, examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions. Beyond prompts, our work can be extended to augment model evaluation and alignment in specific application contexts.

The application of Large Language Models (LLMs) in software engineering, particularly in static analysis tasks, represents a paradigm shift in the field. In this paper, we investigate the role that current LLMs can play in improving callgraph analysis and type inference for Python programs. Using the PyCG, HeaderGen, and TypeEvalPy micro-benchmarks, we evaluate 26 LLMs, including OpenAI's GPT series and open-source models such as LLaMA. Our study reveals that LLMs show promising results in type inference, demonstrating higher accuracy than traditional methods, yet they exhibit limitations in callgraph analysis. This contrast emphasizes the need for specialized fine-tuning of LLMs to better suit specific static analysis tasks. Our findings provide a foundation for further research towards integrating LLMs for static analysis tasks.

While training large language models (LLMs) from scratch can indeed lead to models with distinct capabilities and strengths, this approach incurs substantial costs and may lead to potential redundancy in competencies. An alternative strategy is to combine existing LLMs into a more robust LLM, thereby diminishing the necessity for expensive pre-training. However, due to the diverse architectures of LLMs, direct parameter blending proves to be unfeasible. Recently, \textsc{FuseLLM} introduced the concept of knowledge fusion to transfer the collective knowledge of multiple structurally varied LLMs into a target LLM through lightweight continual training. In this report, we extend the scalability and flexibility of the \textsc{FuseLLM} framework to realize the fusion of chat LLMs, resulting in \textsc{FuseChat}. \textsc{FuseChat} comprises two main stages. Firstly, we undertake knowledge fusion for structurally and scale-varied source LLMs to derive multiple target LLMs of identical structure and size via lightweight fine-tuning. Then, these target LLMs are merged within the parameter space, wherein we propose a novel method for determining the merging weights based on the variation ratio of parameter matrices before and after fine-tuning. We validate our approach using three prominent chat LLMs with diverse architectures and scales, namely \texttt{NH2-Mixtral-8x7B}, \texttt{NH2-Solar-10.7B}, and \texttt{OpenChat-3.5-7B}. Experimental results spanning various chat domains demonstrate the superiority of \texttt{\textsc{FuseChat}-7B} across a broad spectrum of chat LLMs at 7B and 34B scales, even surpassing \texttt{GPT-3.5 (March)} and approaching \texttt{Mixtral-8x7B-Instruct}. Our code, model weights, and data are openly accessible at \url{//github.com/fanqiwan/FuseLLM}.

Foundation models (FMs), such as Large Language Models (LLMs), have revolutionized software development by enabling new use cases and business models. We refer to software built using FMs as FMware. The unique properties of FMware (e.g., prompts, agents, and the need for orchestration), coupled with the intrinsic limitations of FMs (e.g., hallucination) lead to a completely new set of software engineering challenges. Based on our industrial experience, we identified 10 key SE4FMware challenges that have caused enterprise FMware development to be unproductive, costly, and risky. In this paper, we discuss these challenges in detail and state the path for innovation that we envision. Next, we present FMArts, which is our long-term effort towards creating a cradle-to-grave platform for the engineering of trustworthy FMware. Finally, we (i) show how the unique properties of FMArts enabled us to design and develop a complex FMware for a large customer in a timely manner and (ii) discuss the lessons that we learned in doing so. We hope that the disclosure of the aforementioned challenges and our associated efforts to tackle them will not only raise awareness but also promote deeper and further discussions, knowledge sharing, and innovative solutions across the software engineering discipline.

Driven by the surge in code generation using large language models (LLMs), numerous benchmarks have emerged to evaluate these LLMs capabilities. We conducted a large-scale human evaluation of HumanEval and MBPP, two popular benchmarks for Python code generation, analyzing their diversity and difficulty. Our findings unveil a critical bias towards a limited set of programming concepts, neglecting most of the other concepts entirely. Furthermore, we uncover a worrying prevalence of easy tasks, potentially inflating model performance estimations. To address these limitations, we propose a novel benchmark, PythonSaga, featuring 185 hand-crafted prompts on a balanced representation of 38 programming concepts across diverse difficulty levels.

Large Language Models (LLMs), used in creative writing, code generation, and translation, generate text based on input sequences but are vulnerable to jailbreak attacks, where crafted prompts induce harmful outputs. Most jailbreak prompt methods use a combination of jailbreak templates followed by questions to ask to create jailbreak prompts. However, existing jailbreak prompt designs generally suffer from excessive semantic differences, resulting in an inability to resist defenses that use simple semantic metrics as thresholds. Jailbreak prompts are semantically more varied than the original questions used for queries. In this paper, we introduce a Semantic Mirror Jailbreak (SMJ) approach that bypasses LLMs by generating jailbreak prompts that are semantically similar to the original question. We model the search for jailbreak prompts that satisfy both semantic similarity and jailbreak validity as a multi-objective optimization problem and employ a standardized set of genetic algorithms for generating eligible prompts. Compared to the baseline AutoDAN-GA, SMJ achieves attack success rates (ASR) that are at most 35.4% higher without ONION defense and 85.2% higher with ONION defense. SMJ's better performance in all three semantic meaningfulness metrics of Jailbreak Prompt, Similarity, and Outlier, also means that SMJ is resistant to defenses that use those metrics as thresholds.

We present VeriX, a first step towards verified explainability of machine learning models in safety-critical applications. Specifically, our sound and optimal explanations can guarantee prediction invariance against bounded perturbations. We utilise constraint solving techniques together with feature sensitivity ranking to efficiently compute these explanations. We evaluate our approach on image recognition benchmarks and a real-world scenario of autonomous aircraft taxiing.

北京阿比特科技有限公司