Cyber-physical systems (CPS) data privacy protection during sharing, aggregating, and publishing is a challenging problem. Several privacy protection mechanisms have been developed in the literature to protect sensitive data from adversarial analysis and eliminate the risk of re-identifying the original properties of shared data. However, most of the existing solutions have drawbacks, such as (i) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (ii) ignoring data providers privacy preference, (iii) using uniform privacy protection which may create inadequate privacy for some provider while overprotecting others, and (iv) lack of a comprehensive privacy quantification model assuring data privacy-preservation. To address these issues, we propose a personalized privacy preference framework by characterizing and quantifying the CPS vulnerabilities as well as ensuring privacy. First, we introduce a standard vulnerability profiling library (SVPL) by arranging the nodes of an energy-CPS from maximum to minimum vulnerable based on their privacy loss. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that our privacy characterization and quantification model can attain better privacy preservation by eliminating the trade-off between privacy, utility, and risk of losing information.
The importance of deep learning data privacy has gained significant attention in recent years. It is probably to suffer data breaches when applying deep learning to cryptocurrency that lacks supervision of financial regulatory agencies. However, there is little relative research in the financial area to our best knowledge. We apply two representative deep learning privacy-privacy frameworks proposed by Google to financial trading data. We designed the experiments with several different parameters suggested from the original studies. In addition, we refer the degree of privacy to Google and Apple companies to estimate the results more reasonably. The results show that DP-SGD performs better than the PATE framework in financial trading data. The tradeoff between privacy and accuracy is low in DP-SGD. The degree of privacy also is in line with the actual case. Therefore, we can obtain a strong privacy guarantee with precision to avoid potential financial loss.
In this work we explore reconstructing hand-object interactions in the wild. The core challenge of this problem is the lack of appropriate 3D labeled data. To overcome this issue, we propose an optimization-based procedure which does not require direct 3D supervision. The general strategy we adopt is to exploit all available related data (2D bounding boxes, 2D hand keypoints, 2D instance masks, 3D object models, 3D in-the-lab MoCap) to provide constraints for the 3D reconstruction. Rather than optimizing the hand and object individually, we optimize them jointly which allows us to impose additional constraints based on hand-object contact, collision, and occlusion. Our method produces compelling reconstructions on the challenging in-the-wild data from the EPIC Kitchens and the 100 Days of Hands datasets, across a range of object categories. Quantitatively, we demonstrate that our approach compares favorably to existing approaches in the lab settings where ground truth 3D annotations are available.
The SCADA system is the foundation of the large-scale industrial control system. It is widely used in industries of petrochemistry, electric power, pipeline, etc. The natural gas SCADA system is among the critical infrastructure systems that have security issues related to trusted communications in transactions at the control system layer, and lack quantitative risk assessment and mitigation models. However, to guarantee the security of the Oil and Gas Transmission SCADA systems (OGTSS), there should be a holistic security system that considers the nature of these SCADA systems. In this paper, we augment our Security Awareness Framework with two new contributions, (i) a Data Quantization and State Compression Approach (DQSCA) that improves the classification accuracy, speeds up the detection algorithm, and reduces the computational resource consumption. DQSCA reduces the size of processed data while preserving original key events and patterns within the datasets. (ii) A quantitative risk assessment model that carries out regular system information security evaluation and assessment on the SCADA system using a deductive process. Our experiments denote that DQSCA has a low negative impact on the reduction of the detection accuracy (2.45% and 4.45%) while it reduces the detection time much (27.74% and 42.06%) for the Turnipseed and Gao datasets respectively. Furthermore, the mean absolute percentage error (MAPE) rate for the proposed risk assessment model is lower than the intrusion response system (Suricata) for the DOS, Response Injection, and Command Injection attacks by 59.80%, 73.72%, and 66.96% respectively.
Real-world applications in healthcare and supply chain domains produce, exchange, and share data in a multi-stakeholder environment. Data owners want to control their data and privacy in such settings. On the other hand, data consumers demand methods to understand when, how, and who produced the data. These requirements necessitate data governance frameworks that guarantee data provenance, privacy protection, and consent management. We introduce a decentralized data governance framework based on blockchain technology and proxy re-encryption to let data owners control and track their data through privacy-enhancing and consent management mechanisms. Besides, our framework allows the data consumers to understand data lineage through a blockchain-based provenance mechanism. We have used Digital e-prescription as the use case since it has multiple stakeholders and sensitive data while enabling the medical fraternity to manage patients' prescription data, involving patients as data owners, doctors and pharmacists as data consumers. Our proof-of-concept implementation and evaluation results based on CosmWasm, Ethereum, and pyUmbral PRE show that the proposed decentralized system guarantees transparency, privacy, and trust with minimal overhead.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Modern online advertising systems inevitably rely on personalization methods, such as click-through rate (CTR) prediction. Recent progress in CTR prediction enjoys the rich representation capabilities of deep learning and achieves great success in large-scale industrial applications. However, these methods can suffer from lack of exploration. Another line of prior work addresses the exploration-exploitation trade-off problem with contextual bandit methods, which are less studied in the industry recently due to the difficulty in extending their flexibility with deep models. In this paper, we propose a novel Deep Uncertainty-Aware Learning (DUAL) method to learn deep CTR models based on Gaussian processes, which can provide efficient uncertainty estimations along with the CTR predictions while maintaining the flexibility of deep neural networks. By linking the ability to estimate predictive uncertainties of DUAL to well-known bandit algorithms, we further present DUAL-based Ad-ranking strategies to boost up long-term utilities such as the social welfare in advertising systems. Experimental results on several public datasets demonstrate the effectiveness of our methods. Remarkably, an online A/B test deployed in the Alibaba display advertising platform shows an $8.2\%$ social welfare improvement and an $8.0\%$ revenue lift.
Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.
We detail a new framework for privacy preserving deep learning and discuss its assets. The framework puts a premium on ownership and secure processing of data and introduces a valuable representation based on chains of commands and tensors. This abstraction allows one to implement complex privacy preserving constructs such as Federated Learning, Secure Multiparty Computation, and Differential Privacy while still exposing a familiar deep learning API to the end-user. We report early results on the Boston Housing and Pima Indian Diabetes datasets. While the privacy features apart from Differential Privacy do not impact the prediction accuracy, the current implementation of the framework introduces a significant overhead in performance, which will be addressed at a later stage of the development. We believe this work is an important milestone introducing the first reliable, general framework for privacy preserving deep learning.
Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.