Ensuring the safe operation of legged robots in uncertain, novel environments is crucial to their widespread adoption. Despite recent advances in safety filters that can keep arbitrary task-driven policies from incurring safety failures, existing solutions for legged robot locomotion still rely on simplified dynamics and may fail when the robot is perturbed away from predefined stable gaits. This paper presents a general approach that leverages offline game-theoretic reinforcement learning to synthesize a highly robust safety filter for high-order nonlinear dynamics. This gameplay filter then maintains runtime safety by continually simulating adversarial futures and precluding task-driven actions that would cause it to lose future games (and thereby violate safety). Validated on a 36-dimensional quadruped robot locomotion task, the gameplay safety filter exhibits inherent robustness to the sim-to-real gap without manual tuning or heuristic designs. Physical experiments demonstrate the effectiveness of the gameplay safety filter under perturbations, such as tugging and unmodeled irregular terrains, while simulation studies shed light on how to trade off computation and conservativeness without compromising safety.
Task-aware navigation continues to be a challenging area of research, especially in scenarios involving open vocabulary. Previous studies primarily focus on finding suitable locations for task completion, often overlooking the importance of the robot's pose. However, the robot's orientation is crucial for successfully completing tasks because of how objects are arranged (e.g., to open a refrigerator door). Humans intuitively navigate to objects with the right orientation using semantics and common sense. For instance, when opening a refrigerator, we naturally stand in front of it rather than to the side. Recent advances suggest that Vision-Language Models (VLMs) can provide robots with similar common sense. Therefore, we develop a VLM-driven method called Navigation-to-Gaze (Navi2Gaze) for efficient navigation and object gazing based on task descriptions. This method uses the VLM to score and select the best pose from numerous candidates automatically. In evaluations on multiple photorealistic simulation benchmarks, Navi2Gaze significantly outperforms existing approaches and precisely determines the optimal orientation relative to target objects.
In data-driven applications, preserving user privacy while enabling valuable computations remains a critical challenge. Technologies like Differential Privacy (DP) have been pivotal in addressing these concerns. The shuffle model of DP requires no trusted curators and can achieve high utility by leveraging the privacy amplification effect yielded from shuffling. These benefits have led to significant interest in the shuffle model. However, the computation tasks in the shuffle model are limited to statistical estimation, making the shuffle model inapplicable to real-world scenarios in which each user requires a personalized output. This paper introduces a novel paradigm termed Private Individual Computation (PIC), expanding the shuffle model to support a broader range of permutation-equivariant computations. PIC enables personalized outputs while preserving privacy, and enjoys privacy amplification through shuffling. We propose a concrete protocol that realizes PIC. By using one-time public keys, our protocol enables users to receive their outputs without compromising anonymity, which is essential for privacy amplification. Additionally, we present an optimal randomizer, the Minkowski Response, designed for the PIC model to enhance utility. We formally prove the security and privacy properties of the PIC protocol. Theoretical analysis and empirical evaluations demonstrate PIC's capability in handling non-statistical computation tasks, and the efficacy of PIC and the Minkowski randomizer in achieving superior utility compared to existing solutions.
In recent years, neural networks have been used to implement symmetric cryptographic functions for secure communications. Extending this domain, the proposed approach explores the application of asymmetric cryptography within a neural network framework to safeguard the exchange between two communicating entities, i.e., Alice and Bob, from an adversarial eavesdropper, i.e., Eve. It employs a set of five distinct cryptographic keys to examine the efficacy and robustness of communication security against eavesdropping attempts using the principles of elliptic curve cryptography. The experimental setup reveals that Alice and Bob achieve secure communication with negligible variation in security effectiveness across different curves. It is also designed to evaluate cryptographic resilience. Specifically, the loss metrics for Bob oscillate between 0 and 1 during encryption-decryption processes, indicating successful message comprehension post-encryption by Alice. The potential vulnerability with a decryption accuracy exceeds 60\%, where Eve experiences enhanced adversarial training, receiving twice the training iterations per batch compared to Alice and Bob.
When legged robots impact their environment executing dynamic motions, they undergo large changes in their velocities in a short amount of time. Measuring and applying feedback to these velocities is challenging, further complicated by uncertainty in the impact model and impact timing. This work proposes a general framework for adapting feedback control during impact by projecting the control objectives to a subspace that is invariant to the impact event. The resultant controller is robust to uncertainties in the impact event while maintaining maximum control authority over the impact-invariant subspace. We demonstrate the improved performance of the projection over other commonly used heuristics on a walking controller for a planar five-link-biped. The projection is also applied to jumping, box jumping, and running controllers for the compliant 3D bipedal robot, Cassie. The modification is easily applied to these various controllers and is a critical component to deploying on the physical robot. Code and video of the experiments are available at //impact-invariant-control.github.io/.
For the past few years, deep generative models have increasingly been used in biological research for a variety of tasks. Recently, they have proven to be valuable for uncovering subtle cell phenotypic differences that are not directly discernible to the human eye. However, current methods employed to achieve this goal mainly rely on Generative Adversarial Networks (GANs). While effective, GANs encompass issues such as training instability and mode collapse, and they do not accurately map images back to the model's latent space, which is necessary to synthesize, manipulate, and thus interpret outputs based on real images. In this work, we introduce PhenDiff: a multi-class conditional method leveraging Diffusion Models (DMs) designed to identify shifts in cellular phenotypes by translating a real image from one condition to another. We qualitatively and quantitatively validate this method on cases where the phenotypic changes are visible or invisible, such as in low concentrations of drug treatments. Overall, PhenDiff represents a valuable tool for identifying cellular variations in real microscopy images. We anticipate that it could facilitate the understanding of diseases and advance drug discovery through the identification of novel biomarkers.
AI systems make decisions in physical environments through primitive actions or affordances that are accessed via API calls. While deploying AI agents in the real world involves numerous high-level actions, existing embodied simulators offer a limited set of domain-salient APIs. This naturally brings up the questions: how many primitive actions (APIs) are needed for a versatile embodied agent, and what should they look like? We explore this via a thought experiment: assuming that wikiHow tutorials cover a wide variety of human-written tasks, what is the space of APIs needed to cover these instructions? We propose a framework to iteratively induce new APIs by grounding wikiHow instruction to situated agent policies. Inspired by recent successes in large language models (LLMs) for embodied planning, we propose a few-shot prompting to steer GPT-4 to generate Pythonic programs as agent policies and bootstrap a universe of APIs by 1) reusing a seed set of APIs; and then 2) fabricate new API calls when necessary. The focus of this thought experiment is on defining these APIs rather than their executability. We apply the proposed pipeline on instructions from wikiHow tutorials. On a small fraction (0.5%) of tutorials, we induce an action space of 300+ APIs necessary for capturing the rich variety of tasks in the physical world. A detailed automatic and human analysis of the induction output reveals that the proposed pipeline enables effective reuse and creation of APIs. Moreover, a manual review revealed that existing simulators support only a small subset of the induced APIs (9 of the top 50 frequent APIs), motivating the development of action-rich embodied environments.
Relative localization is crucial for multi-robot systems to perform cooperative tasks, especially in GPS-denied environments. Current techniques for multi-robot relative localization rely on expensive or short-range sensors such as cameras and LIDARs. As a result, these algorithms face challenges such as high computational complexity (e.g., map merging), dependencies on well-structured environments, etc. To remedy this gap, we propose a new distributed approach to perform relative localization (RL) using a common Access Point (AP). To achieve this efficiently, we propose a novel Hierarchical Gaussian Processes (HGP) mapping of the Radio Signal Strength Indicator (RSSI) values from a Wi-Fi AP to which the robots are connected. Each robot performs hierarchical inference using the HGP map to locate the AP in its reference frame, and the robots obtain relative locations of the neighboring robots leveraging AP-oriented algebraic transformations. The approach readily applies to resource-constrained devices and relies only on the ubiquitously-available WiFi RSSI measurement. We extensively validate the performance of the proposed HGR-PL in Robotarium simulations against several state-of-the-art methods. The results indicate superior performance of HGP-RL regarding localization accuracy, computation, and communication overheads. Finally, we showcase the utility of HGP-RL through a multi-robot cooperative experiment to achieve a rendezvous task in a team of three mobile robots.
The advent of artificial intelligence technology paved the way of many researches to be made within air combat sector. Academicians and many other researchers did a research on a prominent research direction called autonomous maneuver decision of UAV. Elaborative researches produced some outcomes, but decisions that include Reinforcement Learning(RL) came out to be more efficient. There have been many researches and experiments done to make an agent reach its target in an optimal way, most prominent are Genetic Algorithm(GA) , A star, RRT and other various optimization techniques have been used. But Reinforcement Learning is the well known one for its success. In DARPHA Alpha Dogfight Trials, reinforcement learning prevailed against a real veteran F16 human pilot who was trained by Boeing. This successor model was developed by Heron Systems. After this accomplishment, reinforcement learning bring tremendous attention on itself. In this research we aimed our UAV which has a dubin vehicle dynamic property to move to the target in two dimensional space in an optimal path using Twin Delayed Deep Deterministic Policy Gradients (TD3) and used in experience replay Hindsight Experience Replay(HER).We did tests on two different environments and used simulations.
Deep neural networks have been able to outperform humans in some cases like image recognition and image classification. However, with the emergence of various novel categories, the ability to continuously widen the learning capability of such networks from limited samples, still remains a challenge. Techniques like Meta-Learning and/or few-shot learning showed promising results, where they can learn or generalize to a novel category/task based on prior knowledge. In this paper, we perform a study of the existing few-shot meta-learning techniques in the computer vision domain based on their method and evaluation metrics. We provide a taxonomy for the techniques and categorize them as data-augmentation, embedding, optimization and semantics based learning for few-shot, one-shot and zero-shot settings. We then describe the seminal work done in each category and discuss their approach towards solving the predicament of learning from few samples. Lastly we provide a comparison of these techniques on the commonly used benchmark datasets: Omniglot, and MiniImagenet, along with a discussion towards the future direction of improving the performance of these techniques towards the final goal of outperforming humans.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.