The 6th generation (6G) wireless networks will likely to support a variety of capabilities beyond communication, such as sensing and localization, through the use of communication networks empowered by advanced technologies. Integrated sensing and communication (ISAC) has been recognized as a critical technology as well as an usage scenario for 6G, as widely agreed by leading global standardization bodies. ISAC utilizes communication infrastructure and devices to provide the capability of sensing the environment with high resolution, as well as tracking and localizing moving objects nearby. Meeting both the requirements for communication and sensing simultaneously, ISAC based approaches celebrate the advantages of higher spectral and energy efficiency compared to two separate systems to serve two purposes, and potentially lower costs and easy deployment. A key step towards the standardization and commercialization of ISAC is to carry out comprehensive field trials in practical networks, such as the 5th generation (5G) network, to demonstrate its true capacities in practical scenarios. In this paper, an ISAC based outdoor multi-target detection, tracking and localization approach is proposed and validated in 5G networks. The proposed system comprises of 5G base stations (BSs) which serve nearby mobile users normally, while accomplishing the task of detecting, tracking and localizing drones, vehicles and pedestrians simultaneously. Comprehensive trial results demonstrate the relatively high accuracy of the proposed method in practical outdoor environment when tracking and localizing single targets and multiple targets.
In past years, non-terrestrial networks (NTNs) have emerged as a viable solution for providing ubiquitous connectivity for future wireless networks due to their ability to reach large geographical areas. However, the efficient integration and operation of an NTN with a classic terrestrial network (TN) is challenging due the large amount of parameters to tune. In this paper, we consider the downlink scenario of an integrated TN-NTN transmitting over the S band, comprised of low-earth orbit (LEO) satellites overlapping a large-scale ground cellular network. We propose a new resource management framework to optimize the user equipment (UE) performance by properly controlling the spectrum allocation, the UE association and the transmit power of ground base stations (BSs) and satellites. Our study reveals that, in rural scenarios, NTNs, combined with the proposed radio resource management framework, reduce the number of UEs that are out of coverage, highlighting the important role of NTNs in providing ubiquitous connectivity, and greatly improve the overall capacity of the network. Specifically, our solution leads to more than 200% gain in terms of mean data rate with respect to a network without satellites and a standard integrated TN-NTN when the resource allocation setting follows 3GPP recommendation.
Multivariate networks are commonly found in real-world data-driven applications. Uncovering and understanding the relations of interest in multivariate networks is not a trivial task. This paper presents a visual analytics workflow for studying multivariate networks to extract associations between different structural and semantic characteristics of the networks (e.g., what are the combinations of attributes largely relating to the density of a social network?). The workflow consists of a neural-network-based learning phase to classify the data based on the chosen input and output attributes, a dimensionality reduction and optimization phase to produce a simplified set of results for examination, and finally an interpreting phase conducted by the user through an interactive visualization interface. A key part of our design is a composite variable construction step that remodels nonlinear features obtained by neural networks into linear features that are intuitive to interpret. We demonstrate the capabilities of this workflow with multiple case studies on networks derived from social media usage and also evaluate the workflow through an expert interview.
The emergence of Fifth-Generation (5G) communication networks has brought forth unprecedented connectivity with ultra-low latency, high data rates, and pervasive coverage. However, meeting the increasing demands of applications for seamless and high-quality communication, especially in rural areas, requires exploring innovative solutions that expand 5G beyond traditional terrestrial networks. Within the context of Non-Terrestrial Networks (NTNs), two promising technologies with vast potential are High Altitude Platforms (HAPs) and satellites. The combination of these two platforms is able to provide wide coverage and reliable communication in remote and inaccessible areas, and/or where terrestrial infrastructure is unavailable. This study evaluates the performance of the communication link between a Geostationary Equatorial Orbit (GEO) satellite and a HAP using the Internet of Drones Simulator (IoD-Sim), implemented in ns-3 and incorporating the 3GPP TR 38.811 channel model. The code base of IoD-Sim is extended to simulate HAPs, accounting for the Earths curvature in various geographic coordinate systems, and considering realistic mobility patterns. A simulation campaign is conducted to evaluate the GEO-to-HAP communication link in terms of Signal-to-Noise Ratio (SNR) in two different scenarios, considering the mobility of the HAP, and as a function of the frequency and the distance.
The goal of semantic communication is to surpass optimal Shannon's criterion regarding a notable problem for future communication which lies in the integration of collaborative efforts between the intelligence of the transmission source and the joint design of source coding and channel coding. The convergence of scholarly investigation and applicable products in the field of semantic communication is facilitated by the utilization of flexible structural hardware design, which is constrained by the computational capabilities of edge devices. This characteristic represents a significant benefit of joint source-channel coding (JSCC), as it enables the generation of source alphabets with diverse lengths and achieves a code rate of unity. Moreover, JSCC exhibits near-capacity performance while maintaining low complexity. Therefore, we leverage not only quasi-cyclic (QC) characteristics to propose a QC-LDPC code-based JSCC scheme but also Unequal Error Protection (UEP) to ensure the recovery of semantic importance. In this study, the feasibility for using a semantic encoder/decoder that is aware of UEP can be explored based on the existing JSCC system. This approach is aimed at protecting the significance of semantic task-oriented information. Additionally, the deployment of a JSCC system can be facilitated by employing Low-Density Parity-Check (LDPC) codes on a reconfigurable device. This is achieved by reconstructing the LDPC codes as QC-LDPC codes. The QC-LDPC layered decoding technique, which has been specifically optimized for hardware parallelism and tailored for channel decoding applications, can be suitably adapted to accommodate the JSCC system. The performance of the proposed system is evaluated by conducting BER measurements using both floating-point and 6-bit quantization.
Due to complex interactions among various deep neural network (DNN) optimization techniques, modern DNNs can have weights and activations that are dense or sparse with diverse sparsity degrees. To offer a good trade-off between accuracy and hardware performance, an ideal DNN accelerator should have high flexibility to efficiently translate DNN sparsity into reductions in energy and/or latency without incurring significant complexity overhead. This paper introduces hierarchical structured sparsity (HSS), with the key insight that we can systematically represent diverse sparsity degrees by having them hierarchically composed from multiple simple sparsity patterns. As a result, HSS simplifies the underlying hardware since it only needs to support simple sparsity patterns; this significantly reduces the sparsity acceleration overhead, which improves efficiency. Motivated by such opportunities, we propose a simultaneously efficient and flexible accelerator, named HighLight, to accelerate DNNs that have diverse sparsity degrees (including dense). Due to the flexibility of HSS, different HSS patterns can be introduced to DNNs to meet different applications' accuracy requirements. Compared to existing works, HighLight achieves a geomean of up to 6.4x better energy-delay product (EDP) across workloads with diverse sparsity degrees, and always sits on the EDP-accuracy Pareto frontier for representative DNNs
Graph neural network (GNN) link prediction is increasingly deployed in citation, collaboration, and online social networks to recommend academic literature, collaborators, and friends. While prior research has investigated the dyadic fairness of GNN link prediction, the within-group fairness and ``rich get richer'' dynamics of link prediction remain underexplored. However, these aspects have significant consequences for degree and power imbalances in networks. In this paper, we shed light on how degree bias in networks affects Graph Convolutional Network (GCN) link prediction. In particular, we theoretically uncover that GCNs with a symmetric normalized graph filter have a within-group preferential attachment bias. We validate our theoretical analysis on real-world citation, collaboration, and online social networks. We further bridge GCN's preferential attachment bias with unfairness in link prediction and propose a new within-group fairness metric. This metric quantifies disparities in link prediction scores between social groups, towards combating the amplification of degree and power disparities. Finally, we propose a simple training-time strategy to alleviate within-group unfairness, and we show that it is effective on citation, online social, and credit networks.
Scene transfer for vision-based mobile robotics applications is a highly relevant and challenging problem. The utility of a robot greatly depends on its ability to perform a task in the real world, outside of a well-controlled lab environment. Existing scene transfer end-to-end policy learning approaches often suffer from poor sample efficiency or limited generalization capabilities, making them unsuitable for mobile robotics applications. This work proposes an adaptive multi-pair contrastive learning strategy for visual representation learning that enables zero-shot scene transfer and real-world deployment. Control policies relying on the embedding are able to operate in unseen environments without the need for finetuning in the deployment environment. We demonstrate the performance of our approach on the task of agile, vision-based quadrotor flight. Extensive simulation and real-world experiments demonstrate that our approach successfully generalizes beyond the training domain and outperforms all baselines.
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.
Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.
Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.