亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of extracting joint and individual signals from multi-view data, that is data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches, and find joint and individual multi-view signals that align with domain specific knowledge.

相關內容

With the enactment of privacy-preserving regulations, e.g., GDPR, federated SVD is proposed to enable SVD-based applications over different data sources without revealing the original data. However, many SVD-based applications, such as principal components analysis in genetic studies dealing with billion-scale data, cannot be well supported by existing federated SVD solutions. The crux is that these solutions, adopting either differential privacy (DP) or homomorphic encryption (HE), suffer from accuracy loss caused by unremovable noise or degraded efficiency due to inflated data. In this paper, we propose FedSVD, a practical lossless federated SVD method over billion-scale data, which can simultaneously achieve lossless accuracy and high efficiency. At the heart of FedSVD is a lossless matrix masking scheme delicately designed for SVD: 1) While adopting the masks to protect private data, FedSVD completely removes them from the final results of SVD to achieve lossless accuracy; and 2) As the masks do not inflate the data, FedSVD avoids extra computation and communication overhead during the factorization to maintain high efficiency. Experiments with real-world datasets show that FedSVD is over 10000 times faster than the HE-based method and has 10 orders of magnitude smaller error than the DP-based solution on SVD tasks. We further build and evaluate FedSVD over three real-world applications: principal components analysis (PCA), linear regression (LR), and latent semantic analysis (LSA), to show its superior performance in practice. On federated LR tasks, compared with two state-of-the-art solutions: FATE [17] and SecureML [19], FedSVD-LR is 100 times faster than SecureML and 10 times faster than FATE.

For frequency division duplex systems, the essential downlink channel state information (CSI) feedback includes the links of compression, feedback, decompression and reconstruction to reduce the feedback overhead. One efficient CSI feedback method is the Auto-Encoder (AE) structure based on deep learning, yet facing problems in actual deployments, such as selecting the deployment mode when deploying in a cell with multiple complex scenarios. Rather than designing an AE network with huge complexity to deal with CSI of all scenarios, a more realistic mode is to divide the CSI dataset by region/scenario and use multiple relatively simple AE networks to handle subregions' CSI. However, both require high memory capacity for user equipment (UE) and are not suitable for low-level devices. In this paper, we propose a new user-friendly-designed framework based on the latter multi-tasking mode. Via Multi-Task Learning, our framework, Single-encoder-to-Multiple-decoders (S-to-M), designs the multiple independent AEs into a joint architecture: a shared encoder corresponds to multiple task-specific decoders. We also complete our framework with GateNet as a classifier to enable the base station autonomously select the right task-specific decoder corresponding to the subregion. Experiments on the simulating multi-scenario CSI dataset demonstrate our proposed S-to-M's advantages over the other benchmark modes, i.e., significantly reducing the model complexity and the UE's memory consumption

We propose a new method for supervised learning with multiple sets of features ("views"). The multi-view problem is especially important in biology and medicine, where "-omics" data such as genomics, proteomics and radiomics are measured on a common set of samples. Cooperative learning combines the usual squared error loss of predictions with an "agreement" penalty to encourage the predictions from different data views to agree. By varying the weight of the agreement penalty, we get a continuum of solutions that include the well-known early and late fusion approaches. Cooperative learning chooses the degree of agreement (or fusion) in an adaptive manner, using a validation set or cross-validation to estimate test set prediction error. One version of our fitting procedure is modular, where one can choose different fitting mechanisms (e.g. lasso, random forests, boosting, neural networks) appropriate for different data views. In the setting of cooperative regularized linear regression, the method combines the lasso penalty with the agreement penalty, yielding feature sparsity. The method can be especially powerful when the different data views share some underlying relationship in their signals that can be exploited to boost the signals. We show that cooperative learning achieves higher predictive accuracy on simulated data and real multiomics examples of labor onset prediction and breast ductal carcinoma in situ and invasive breast cancer classification. Leveraging aligned signals and allowing flexible fitting mechanisms for different modalities, cooperative learning offers a powerful approach to multiomics data fusion.

This paper studies inference in randomized controlled trials with multiple treatments, where treatment status is determined according to a "matched tuples" design. Here, by a matched tuples design, we mean an experimental design where units are sampled i.i.d. from the population of interest, grouped into "homogeneous" blocks with cardinality equal to the number of treatments, and finally, within each block, each treatment is assigned exactly once uniformly at random. We first study estimation and inference for matched tuples designs in the general setting where the parameter of interest is a vector of linear contrasts over the collection of average potential outcomes for each treatment. Parameters of this form include but are not limited to standard average treatment effects used to compare one treatment relative to another. We first establish conditions under which a sample analogue estimator is asymptotically normal and construct a consistent estimator of its corresponding asymptotic variance. Combining these results establishes the asymptotic validity of tests based on these estimators. In contrast, we show that a common testing procedure based on a linear regression with block fixed effects and the usual heteroskedasticity-robust variance estimator is invalid in the sense that the resulting test may have a limiting rejection probability under the null hypothesis strictly greater than the nominal level. We then apply our results to study the asymptotic properties of what we call "fully-blocked" $2^K$ factorial designs, which are simply matched tuples designs applied to a full factorial experiment. Leveraging our previous results, we establish that our estimator achieves a lower asymptotic variance under the fully-blocked design than that under any stratified factorial design. A simulation study and empirical application illustrate the practical relevance of our results.

Many innovative applications require establishing correspondences among 3D geometric objects. However, the countless possible deformations of smooth surfaces make shape matching a challenging task. Finding an embedding to represent the different shapes in high-dimensional space where the matching is easier to solve is a well-trodden path that has given many outstanding solutions. Recently, a new trend has shown advantages in learning such representations. This novel idea motivated us to investigate which properties differentiate these data-driven embeddings and which ones promote state-of-the-art results. In this study, we analyze, for the first time, properties that arise in data-driven learned embedding and their relation to the shape-matching task. Our discoveries highlight the close link between matching and smoothness, which naturally emerge from training. Also, we demonstrate the relation between the orthogonality of the embedding and the bijectivity of the correspondence. Our experiments show exciting results, overcoming well-established alternatives and shedding a different light on relevant contexts and properties for learned embeddings.

Reversible data hiding continues to attract significant attention in recent years. In particular, an increasing number of authors focus on the higher significant bit (HSB) plane of an image which can yield more redundant space. On the other hand, the lower significant bit plane is often discarded in existing schemes due to their harm to the embedding rate. This paper proposes an efficient reversible data hiding scheme via a double-peak two-layer embedding (DTLE) strategy with prediction error expansion. The higher six-bit planes of the image are assigned as the HSB plane, and double prediction error peaks are applied in either embedding layer. This makes fuller use of the redundancy space of images compared with the one error peak strategy. Moreover, we carry out the median-edge detector pre-processing for complex images to reduce the size of the auxiliary information. A series of experimental results show that our DTLE approach achieves up to 83% higher embedding rate on real-world data while providing better image quality.

This article is concerned with two notions of generalized matroid representations motivated by information theory and computer science. The first involves representations by discrete random variables and the second approximate representations by subspace arrangements. In both cases we show that there is no algorithm that checks whether such a representation exists. As a consequence, the conditional independence implication problem is undecidable, which gives an independent answer to a question in information theory by Geiger and Pearl that was recently also answered by Cheuk Ting Li. These problems are closely related to problems of characterizing the achievable rates in certain network coding problems and of constructing secret sharing schemes. Our methods to approach these problems are mostly algebraic. Specifically, they involve reductions from the uniform word problem for finite groups and the word problem for sofic groups.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.

Recent years have witnessed the enormous success of low-dimensional vector space representations of knowledge graphs to predict missing facts or find erroneous ones. Currently, however, it is not yet well-understood how ontological knowledge, e.g. given as a set of (existential) rules, can be embedded in a principled way. To address this shortcoming, in this paper we introduce a framework based on convex regions, which can faithfully incorporate ontological knowledge into the vector space embedding. Our technical contribution is two-fold. First, we show that some of the most popular existing embedding approaches are not capable of modelling even very simple types of rules. Second, we show that our framework can represent ontologies that are expressed using so-called quasi-chained existential rules in an exact way, such that any set of facts which is induced using that vector space embedding is logically consistent and deductively closed with respect to the input ontology.

北京阿比特科技有限公司