亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Individuals, businesses, and governments all face additional difficulties because of the rise of sophisticated cyberattack attacks. This paper investigates the targeting of journalists and activists by the malware Pegasus. To gain a deeper understanding of the tactics utilized by cybercriminals and the vulnerabilities that facilitate their scope, this research looks on numerous occurrences and identifies recurring patterns in the strategies, methods, and practices employed. In this paper, a comprehensive analysis is conducted on the far-reaching consequences of these attacks for cybersecurity policy, encompassing the pressing need for enhanced threat intelligence sharing mechanisms, the implementation of more resilient incident response protocols, and the allocation of greater financial resources towards the advancement of cybersecurity research and development initiatives. The research also discusses how Pegasus will affect SCADA systems and critical infrastructure, and it describes some of the most important tactics that businesses may use to reduce the danger of cyberattacks and safeguard themselves against the 21st century's growing threats. The extent of Pegasus spyware, which can access various data and communications on mobile devices running iOS and Android potentially jeopardise the civil rights and privacy of journalists, activists, and political leaders throughout the world, was found to be worrying

相關內容

Cyberattacks have grown into a major risk for organizations, with common consequences being data theft, sabotage, and extortion. Since preventive measures do not suffice to repel attacks, timely detection of successful intruders is crucial to stop them from reaching their final goals. For this purpose, many organizations utilize Security Information and Event Management (SIEM) systems to centrally collect security-related events and scan them for attack indicators using expert-written detection rules. However, as we show by analyzing a set of widespread SIEM detection rules, adversaries can evade almost half of them easily, allowing them to perform common malicious actions within an enterprise network without being detected. To remedy these critical detection blind spots, we propose the idea of adaptive misuse detection, which utilizes machine learning to compare incoming events to SIEM rules on the one hand and known-benign events on the other hand to discover successful evasions. Based on this idea, we present AMIDES, an open-source proof-of-concept adaptive misuse detection system. Using four weeks of SIEM events from a large enterprise network and more than 500 hand-crafted evasions, we show that AMIDES successfully detects a majority of these evasions without any false alerts. In addition, AMIDES eases alert analysis by assessing which rules were evaded. Its computational efficiency qualifies AMIDES for real-world operation and hence enables organizations to significantly reduce detection blind spots with moderate effort.

We introduce an autonomous system with closed-loop damping for first-order convex optimization. While, to this day, optimal rates of convergence are only achieved by non-autonomous methods via open-loop damping (e.g., Nesterov's algorithm), we show that our system is the first one featuring a closed-loop damping while exhibiting a rate arbitrarily close to the optimal one. We do so by coupling the damping and the speed of convergence of the system via a well-chosen Lyapunov function. We then derive a practical first-order algorithm called LYDIA by discretizing our system, and present numerical experiments supporting our theoretical findings.

Integer data is typically made differentially private by adding noise from a Discrete Laplace (or Discrete Gaussian) distribution. We study the setting where differential privacy of a counting query is achieved using bit-wise randomized response, i.e., independent, random bit flips on the encoding of the query answer. Binary error-correcting codes transmitted through noisy channels with independent bit flips are well-studied in information theory. However, such codes are unsuitable for differential privacy since they have (by design) high sensitivity, i.e., neighbouring integers have encodings with a large Hamming distance. Gray codes show that it is possible to create an efficient sensitivity 1 encoding, but are also not suitable for differential privacy due to lack of noise-robustness. Our main result is that it is possible, with a constant rate code, to simultaneously achieve the sensitivity of Gray codes and the noise-robustness of error-correcting codes (down to the noise level required for differential privacy). An application of this new encoding of the integers is an asymptotically faster, space-optimal differentially private data structure for histograms.

Large Language Models (LLMs) have demonstrated considerable advances, and several claims have been made about their exceeding human performance. However, in real-world tasks, domain knowledge is often required. Low-resource learning methods like Active Learning (AL) have been proposed to tackle the cost of domain expert annotation, raising this question: Can LLMs surpass compact models trained with expert annotations in domain-specific tasks? In this work, we conduct an empirical experiment on four datasets from three different domains comparing SOTA LLMs with small models trained on expert annotations with AL. We found that small models can outperform GPT-3.5 with a few hundreds of labeled data, and they achieve higher or similar performance with GPT-4 despite that they are hundreds time smaller. Based on these findings, we posit that LLM predictions can be used as a warmup method in real-world applications and human experts remain indispensable in tasks involving data annotation driven by domain-specific knowledge.

Susceptibility to misinformation describes the extent to believe unverifiable claims, which is hidden in people's mental process and infeasible to observe. Existing susceptibility studies heavily rely on the self-reported beliefs, making any downstream applications on susceptability hard to scale. To address these limitations, in this work, we propose a computational model to infer users' susceptibility levels given their activities. Since user's susceptibility is a key indicator for their reposting behavior, we utilize the supervision from the observable sharing behavior to infer the underlying susceptibility tendency. The evaluation shows that our model yields estimations that are highly aligned with human judgment on users' susceptibility level comparisons. Building upon such large-scale susceptibility labeling, we further conduct a comprehensive analysis of how different social factors relate to susceptibility. We find that political leanings and psychological factors are associated with susceptibility in varying degrees.

In the last decade, the United States has lost more than 500,000 people from an overdose involving prescription and illicit opioids (//www.cdc.gov/drugoverdose/epidemic/index.html) making it a national public health emergency (USDHHS, 2017). To more effectively prevent unintentional opioid overdoses, medical practitioners require robust and timely tools that can effectively identify at-risk patients. Community-based social media platforms such as Reddit allow self-disclosure for users to discuss otherwise sensitive drug-related behaviors, often acting as indicators for opioid use disorder. Towards this, we present a moderate size corpus of 2500 opioid-related posts from various subreddits spanning 6 different phases of opioid use: Medical Use, Misuse, Addiction, Recovery, Relapse, Not Using. For every post, we annotate span-level extractive explanations and crucially study their role both in annotation quality and model development. We evaluate several state-of-the-art models in a supervised, few-shot, or zero-shot setting. Experimental results and error analysis show that identifying the phases of opioid use disorder is highly contextual and challenging. However, we find that using explanations during modeling leads to a significant boost in classification accuracy demonstrating their beneficial role in a high-stakes domain such as studying the opioid use disorder continuum. The dataset will be made available for research on Github in the formal version.

Realizing the recent advances in Natural Language Processing (NLP) to the legal sector poses challenging problems such as extremely long sequence lengths, specialized vocabulary that is usually only understood by legal professionals, and high amounts of data imbalance. The recent surge of Large Language Models (LLMs) has begun to provide new opportunities to apply NLP in the legal domain due to their ability to handle lengthy, complex sequences. Moreover, the emergence of domain-specific LLMs has displayed extremely promising results on various tasks. In this study, we aim to quantify how general LLMs perform in comparison to legal-domain models (be it an LLM or otherwise). Specifically, we compare the zero-shot performance of three general-purpose LLMs (ChatGPT-20b, LLaMA-2-70b, and Falcon-180b) on the LEDGAR subset of the LexGLUE benchmark for contract provision classification. Although the LLMs were not explicitly trained on legal data, we observe that they are still able to classify the theme correctly in most cases. However, we find that their mic-F1/mac-F1 performance is up to 19.2/26.8\% lesser than smaller models fine-tuned on the legal domain, thus underscoring the need for more powerful legal-domain LLMs.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

Although measuring held-out accuracy has been the primary approach to evaluate generalization, it often overestimates the performance of NLP models, while alternative approaches for evaluating models either focus on individual tasks or on specific behaviors. Inspired by principles of behavioral testing in software engineering, we introduce CheckList, a task-agnostic methodology for testing NLP models. CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation, as well as a software tool to generate a large and diverse number of test cases quickly. We illustrate the utility of CheckList with tests for three tasks, identifying critical failures in both commercial and state-of-art models. In a user study, a team responsible for a commercial sentiment analysis model found new and actionable bugs in an extensively tested model. In another user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.

With the rise of knowledge graph (KG), question answering over knowledge base (KBQA) has attracted increasing attention in recent years. Despite much research has been conducted on this topic, it is still challenging to apply KBQA technology in industry because business knowledge and real-world questions can be rather complicated. In this paper, we present AliMe-KBQA, a bold attempt to apply KBQA in the E-commerce customer service field. To handle real knowledge and questions, we extend the classic "subject-predicate-object (SPO)" structure with property hierarchy, key-value structure and compound value type (CVT), and enhance traditional KBQA with constraints recognition and reasoning ability. We launch AliMe-KBQA in the Marketing Promotion scenario for merchants during the "Double 11" period in 2018 and other such promotional events afterwards. Online results suggest that AliMe-KBQA is not only able to gain better resolution and improve customer satisfaction, but also becomes the preferred knowledge management method by business knowledge staffs since it offers a more convenient and efficient management experience.

北京阿比特科技有限公司