亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the fundamental problem of finding the best string to represent a given set, in the form of the Closest String problem: Given a set $X \subseteq \Sigma^d$ of $n$ strings, find the string $x^*$ minimizing the radius of the smallest Hamming ball around $x^*$ that encloses all the strings in $X$. In this paper, we investigate whether the Closest String problem admits algorithms that are faster than the trivial exhaustive search algorithm. We obtain the following results for the two natural versions of the problem: $\bullet$ In the continuous Closest String problem, the goal is to find the solution string $x^*$ anywhere in $\Sigma^d$. For binary strings, the exhaustive search algorithm runs in time $O(2^d poly(nd))$ and we prove that it cannot be improved to time $O(2^{(1-\epsilon) d} poly(nd))$, for any $\epsilon > 0$, unless the Strong Exponential Time Hypothesis fails. $\bullet$ In the discrete Closest String problem, $x^*$ is required to be in the input set $X$. While this problem is clearly in polynomial time, its fine-grained complexity has been pinpointed to be quadratic time $n^{2 \pm o(1)}$ whenever the dimension is $\omega(\log n) < d < n^{o(1)}$. We complement this known hardness result with new algorithms, proving essentially that whenever $d$ falls out of this hard range, the discrete Closest String problem can be solved faster than exhaustive search. In the small-$d$ regime, our algorithm is based on a novel application of the inclusion-exclusion principle. Interestingly, all of our results apply (and some are even stronger) to the natural dual of the Closest String problem, called the \emph{Remotest String} problem, where the task is to find a string maximizing the Hamming distance to all the strings in $X$.

相關內容

This work considers the problem of the noisy binary search in a sorted array. The noise is modeled by a parameter $p$ that dictates that a comparison can be incorrect with probability $p$, independently of other queries. We state two types of upper bounds on the number of queries: the worst-case and expected query complexity scenarios. The bounds improve the ones known to date, i.e., our algorithms require fewer queries. Additionally, they have simpler statements, and work for the full range of parameters. All query complexities for the expected query scenarios are tight up to lower order terms. For the problem where target prior is uniform over all possible inputs, we provide algorithm with expected complexity upperbounded by $(\log_2 n + \log_2 \delta^{-1} + 3)/I(p)$, where $n$ is the domain size, $0\le p < 1/2$ is the noise ratio, and $\delta>0$ is the failure probability, and $I(p)$ is the information gain function. As a side-effect, we close some correctness issues regarding previous work. Also, en route, we obtain new and improved query complexities for the search generalized to arbitrary graphs. This paper continues and improves upon the lines of research of Burnashev-Zigangirov [Prob. Per. Informatsii, 1974], Ben-Or and Hassidim [FOCS 2008], Gu and Xu [STOC 2023], and Emamjomeh-Zadeh et al. [STOC 2016], Dereniowski et al. [SOSA@SODA 2019].

Sequential tests and their implied confidence sequences, which are valid at arbitrary stopping times, promise flexible statistical inference and on-the-fly decision making. However, strong guarantees are limited to parametric sequential tests that under-cover in practice or concentration-bound-based sequences that over-cover and have suboptimal rejection times. In this work, we consider \cite{robbins1970boundary}'s delayed-start normal-mixture sequential probability ratio tests, and we provide the first asymptotic type-I-error and expected-rejection-time guarantees under general non-parametric data generating processes, where the asymptotics are indexed by the test's burn-in time. The type-I-error results primarily leverage a martingale strong invariance principle and establish that these tests (and their implied confidence sequences) have type-I error rates approaching a desired $\alpha$-level. The expected-rejection-time results primarily leverage an identity inspired by It\^o's lemma and imply that, in certain asymptotic regimes, the expected rejection time approaches the minimum possible among $\alpha$-level tests. We show how to apply our results to sequential inference on parameters defined by estimating equations, such as average treatment effects. Together, our results establish these (ostensibly parametric) tests as general-purpose, non-parametric, and near-optimal. We illustrate this via numerical experiments.

We present algorithms that compute the terminal configurations for sandpile instances in $O(n \log n)$ time on trees and $O(n)$ time on paths, where $n$ is the number of vertices. The Abelian Sandpile model is a well-known model used in exploring self-organized criticality. Despite a large amount of work on other aspects of sandpiles, there have been limited results in efficiently computing the terminal state, known as the sandpile prediction problem. Our algorithm improves the previous best runtime of $O(n \log^5 n)$ on trees [Ramachandran-Schild SODA '17] and $O(n \log n)$ on paths [Moore-Nilsson '99]. To do so, we move beyond the simulation of individual events by directly computing the number of firings for each vertex. The computation is accelerated using splittable binary search trees. We also generalize our algorithm to adapt at most three sink vertices, which is the first prediction algorithm faster than mere simulation on a sandpile model with sinks. We provide a general reduction that transforms the prediction problem on an arbitrary graph into problems on its subgraphs separated by any vertex set $P$. The reduction gives a time complexity of $O(\log^{|P|} n \cdot T)$ where $T$ denotes the total time for solving on each subgraph. In addition, we give algorithms in $O(n)$ time on cliques and $O(n \log^2 n)$ time on pseudotrees.

Algorithms for online learning typically require one or more boundedness assumptions: that the domain is bounded, that the losses are Lipschitz, or both. In this paper, we develop a new setting for online learning with unbounded domains and non-Lipschitz losses. For this setting we provide an algorithm which guarantees $R_{T}(u)\le \tilde O(G\|u\|\sqrt{T}+L\|u\|^{2}\sqrt{T})$ regret on any problem where the subgradients satisfy $\|g_{t}\|\le G+L\|w_{t}\|$, and show that this bound is unimprovable without further assumptions. We leverage this algorithm to develop new saddle-point optimization algorithms that converge in duality gap in unbounded domains, even in the absence of meaningful curvature. Finally, we provide the first algorithm achieving non-trivial dynamic regret in an unbounded domain for non-Lipschitz losses, as well as a matching lower bound. The regret of our dynamic regret algorithm automatically improves to a novel $L^{*}$ bound when the losses are smooth.

In this paper we prove convergence for contractive time discretisation schemes for semi-linear stochastic evolution equations with irregular Lipschitz nonlinearities, initial values, and additive or multiplicative Gaussian noise on $2$-smooth Banach spaces $X$. The leading operator $A$ is assumed to generate a strongly continuous semigroup $S$ on $X$, and the focus is on non-parabolic problems. The main result concerns convergence of the uniform strong error $$E_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|_X^p\Big)^{1/p} \to 0\quad (k \to 0),$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$ for final time $T>0$. This generalises previous results to a larger class of admissible nonlinearities and noise as well as rough initial data from the Hilbert space case to more general spaces. We present a proof based on a regularisation argument. Within this scope, we extend previous quantified convergence results for more regular nonlinearity and noise from Hilbert to $2$-smooth Banach spaces. The uniform strong error cannot be estimated in terms of the simpler pointwise strong error $$E_k := \bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|_X^p\bigg)^{1/p},$$ which most of the existing literature is concerned with. Our results are illustrated for a variant of the Schr\"odinger equation, for which previous convergence results were not applicable.

In the metric distortion problem there is a set of candidates and a set of voters, all residing in the same metric space. The objective is to choose a candidate with minimum social cost, defined as the total distance of the chosen candidate from all voters. The challenge is that the algorithm receives only ordinal input from each voter, in the form of a ranked list of candidates in non-decreasing order of their distances from her, whereas the objective function is cardinal. The distortion of an algorithm is its worst-case approximation factor with respect to the optimal social cost. A series of papers culminated in a 3-distortion algorithm, which is tight with respect to all deterministic algorithms. Aiming to overcome the limitations of worst-case analysis, we revisit the metric distortion problem through the learning-augmented framework, where the algorithm is provided with some prediction regarding the optimal candidate. The quality of this prediction is unknown, and the goal is to evaluate the performance of the algorithm under a accurate prediction (known as consistency), while simultaneously providing worst-case guarantees even for arbitrarily inaccurate predictions (known as robustness). For our main result, we characterize the robustness-consistency Pareto frontier for the metric distortion problem. We first identify an inevitable trade-off between robustness and consistency. We then devise a family of learning-augmented algorithms that achieves any desired robustness-consistency pair on this Pareto frontier. Furthermore, we provide a more refined analysis of the distortion bounds as a function of the prediction error (with consistency and robustness being two extremes). Finally, we also prove distortion bounds that integrate the notion of $\alpha$-decisiveness, which quantifies the extent to which a voter prefers her favorite candidate relative to the rest.

We study the fundamental problem of fairly allocating a set of indivisible goods among $n$ agents with additive valuations using the desirable fairness notion of maximin share (MMS). MMS is the most popular share-based notion, in which an agent finds an allocation fair to her if she receives goods worth at least her MMS value. An allocation is called MMS if all agents receive at least their MMS value. However, since MMS allocations need not exist when $n>2$, a series of works showed the existence of approximate MMS allocations with the current best factor of $\frac{3}{4} + O(\frac{1}{n})$. The recent work by Akrami et al. showed the limitations of existing approaches and proved that they cannot improve this factor to $3/4 + \Omega(1)$. In this paper, we bypass these barriers to show the existence of $(\frac{3}{4} + \frac{3}{3836})$-MMS allocations by developing new reduction rules and analysis techniques.

A regular expression specifies a set of strings formed by single characters combined with concatenation, union, and Kleene star operators. Given a regular expression $R$ and a string $Q$, the regular expression matching problem is to decide if $Q$ matches any of the strings specified by $R$. Regular expressions are a fundamental concept in formal languages and regular expression matching is a basic primitive for searching and processing data. A standard textbook solution [Thompson, CACM 1968] constructs and simulates a nondeterministic finite automaton, leading to an $O(nm)$ time algorithm, where $n$ is the length of $Q$ and $m$ is the length of $R$. Despite considerable research efforts only polylogarithmic improvements of this bound are known. Recently, conditional lower bounds provided evidence for this lack of progress when Backurs and Indyk [FOCS 2016] proved that, assuming the strong exponential time hypothesis (SETH), regular expression matching cannot be solved in $O((nm)^{1-\epsilon})$, for any constant $\epsilon > 0$. Hence, the complexity of regular expression matching is essentially settled in terms of $n$ and $m$. In this paper, we take a new approach and go beyond worst-case analysis in $n$ and $m$. We introduce a \emph{density} parameter, $\Delta$, that captures the amount of nondeterminism in the NFA simulation on $Q$. The density is at most $nm+1$ but can be significantly smaller. Our main result is a new algorithm that solves regular expression matching in $$O\left(\Delta \log \log \frac{nm}{\Delta} +n + m\right)$$ time. This essentially replaces $nm$ with $\Delta$ in the complexity of regular expression matching. We complement our upper bound by a matching conditional lower bound that proves that we cannot solve regular expression matching in time $O(\Delta^{1-\epsilon})$ for any constant $\epsilon > 0$ assuming SETH.

The edit distance is a fundamental measure of sequence similarity, defined as the minimum number of character insertions, deletions, and substitutions needed to transform one string into the other. Given two strings of length at most $n$, simple dynamic programming computes their edit distance exactly in $O(n^2)$ time, which is also the best possible (up to subpolynomial factors) assuming the Strong Exponential Time Hypothesis (SETH). The last few decades have seen tremendous progress in edit distance approximation, where the runtime has been brought down to subquadratic, near-linear, and even sublinear at the cost of approximation. In this paper, we study the dynamic edit distance problem, where the strings change dynamically as the characters are substituted, inserted, or deleted over time. Each change may happen at any location of either of the two strings. The goal is to maintain the (exact or approximate) edit distance of such dynamic strings while minimizing the update time. The exact edit distance can be maintained in $\tilde{O}(n)$ time per update (Charalampopoulos, Kociumaka, Mozes; 2020), which is again tight assuming SETH. Unfortunately, even with the unprecedented progress in edit distance approximation in the static setting, strikingly little is known regarding dynamic edit distance approximation. Utilizing the off-the-shelf tools, it is possible to achieve an $O(n^{c})$-approximation in $n^{0.5-c+o(1)}$ update time for any constant $c\in [0,\frac16]$. Improving upon this trade-off remains open. The contribution of this work is a dynamic $n^{o(1)}$-approximation algorithm with amortized expected update time of $n^{o(1)}$. In other words, we bring the approximation-ratio and update-time product down to $n^{o(1)}$. Our solution utilizes an elegant framework of precision sampling tree for edit distance approximation (Andoni, Krauthgamer, Onak; 2010).

Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.

北京阿比特科技有限公司