We provide new false discovery proportion (FDP) confidence envelopes in several multiple testing settings relevant to modern high dimensional-data methods. We revisit the scenarios considered in the recent work of \cite{katsevich2020simultaneous}(top-$k$, preordered -- including knockoffs -- , online) with a particular emphasis on obtaining FDP bounds that have both non-asymptotical coverage and asymptotical consistency, i.e. converge below the desired level $\alpha$ when applied to a classical $\alpha$-level false discovery rate (FDR) controlling procedure. This way, we derive new bounds that provide improvements over existing ones, both theoretically and practically, and are suitable for situations where at least a moderate number of rejections is expected. These improvements are illustrated with numerical experiments and real data examples. In particular, the improvement is significant in the knockoff setting, which shows the impact of the method for practical use. As side results, we introduce a new confidence envelope for the empirical cumulative distribution function of i.i.d. uniform variables and we provide new power results in sparse cases, both being of independent interest.
Neural network pruning is a highly effective technique aimed at reducing the computational and memory demands of large neural networks. In this research paper, we present a novel approach to pruning neural networks utilizing Bayesian inference, which can seamlessly integrate into the training procedure. Our proposed method leverages the posterior probabilities of the neural network prior to and following pruning, enabling the calculation of Bayes factors. The calculated Bayes factors guide the iterative pruning. Through comprehensive evaluations conducted on multiple benchmarks, we demonstrate that our method achieves desired levels of sparsity while maintaining competitive accuracy.
Kinetic approaches are generally accurate in dealing with microscale plasma physics problems but are computationally expensive for large-scale or multiscale systems. One of the long-standing problems in plasma physics is the integration of kinetic physics into fluid models, which is often achieved through sophisticated analytical closure terms. In this paper, we successfully construct a multi-moment fluid model with an implicit fluid closure included in the neural network using machine learning. The multi-moment fluid model is trained with a small fraction of sparsely sampled data from kinetic simulations of Landau damping, using the physics-informed neural network (PINN) and the gradient-enhanced physics-informed neural network (gPINN). The multi-moment fluid model constructed using either PINN or gPINN reproduces the time evolution of the electric field energy, including its damping rate, and the plasma dynamics from the kinetic simulations. In addition, we introduce a variant of the gPINN architecture, namely, gPINN$p$ to capture the Landau damping process. Instead of including the gradients of all the equation residuals, gPINN$p$ only adds the gradient of the pressure equation residual as one additional constraint. Among the three approaches, the gPINN$p$-constructed multi-moment fluid model offers the most accurate results. This work sheds light on the accurate and efficient modeling of large-scale systems, which can be extended to complex multiscale laboratory, space, and astrophysical plasma physics problems.
To understand the ability and limitations of convolutional neural networks to generate time series that mimic complex temporal signals, we trained a generative adversarial network consisting of deep convolutional networks to generate chaotic time series and used nonlinear time series analysis to evaluate the generated time series. A numerical measure of determinism and the Lyapunov exponent, a measure of trajectory instability, showed that the generated time series well reproduce the chaotic properties of the original time series. However, error distribution analyses showed that large errors appeared at a low but non-negligible rate. Such errors would not be expected if the distribution were assumed to be exponential.
Linear regression and classification models with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression models based on fusion penalties are presented. The first one is a generalization of the variable fusion model based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.
Training robust speaker verification systems without speaker labels has long been a challenging task. Previous studies observed a large performance gap between self-supervised and fully supervised methods. In this paper, we apply a non-contrastive self-supervised learning framework called DIstillation with NO labels (DINO) and propose two regularization terms applied to embeddings in DINO. One regularization term guarantees the diversity of the embeddings, while the other regularization term decorrelates the variables of each embedding. The effectiveness of various data augmentation techniques are explored, on both time and frequency domain. A range of experiments conducted on the VoxCeleb datasets demonstrate the superiority of the regularized DINO framework in speaker verification. Our method achieves the state-of-the-art speaker verification performance under a single-stage self-supervised setting on VoxCeleb. Code has been made publicly available at //github.com/alibaba-damo-academy/3D-Speaker.
In the field of autonomous driving, there have been many excellent perception models for object detection, semantic segmentation, and other tasks, but how can we effectively use the perception models for vehicle planning? Traditional autonomous vehicle trajectory prediction methods not only need to obey traffic rules to avoid collisions, but also need to follow the prescribed route to reach the destination. In this paper, we propose a Transformer-based trajectory prediction network for end-to-end autonomous driving without rules called Target-point Attention Transformer network (TAT). We use the attention mechanism to realize the interaction between the predicted trajectory and the perception features as well as target-points. We demonstrate that our proposed method outperforms existing conditional imitation learning and GRU-based methods, significantly reducing the occurrence of accidents and improving route completion. We evaluate our approach in complex closed loop driving scenarios in cities using the CARLA simulator and achieve state-of-the-art performance.
The digital twin concept represents an appealing opportunity to advance condition-based and predictive maintenance paradigms for civil engineering systems, thus allowing reduced lifecycle costs, increased system safety, and increased system availability. This work proposes a predictive digital twin approach to the health monitoring, maintenance, and management planning of civil engineering structures. The asset-twin coupled dynamical system is encoded employing a probabilistic graphical model, which allows all relevant sources of uncertainty to be taken into account. In particular, the time-repeating observations-to-decisions flow is modeled using a dynamic Bayesian network. Real-time structural health diagnostics are provided by assimilating sensed data with deep learning models. The digital twin state is continually updated in a sequential Bayesian inference fashion. This is then exploited to inform the optimal planning of maintenance and management actions within a dynamic decision-making framework. A preliminary offline phase involves the population of training datasets through a reduced-order numerical model and the computation of a health-dependent control policy. The strategy is assessed on two synthetic case studies, involving a cantilever beam and a railway bridge, demonstrating the dynamic decision-making capabilities of health-aware digital twins.
While macroscopic traffic flow models consider traffic as a fluid, microscopic traffic flow models describe the dynamics of individual vehicles. Capturing macroscopic traffic phenomena remains a challenge for microscopic models, especially in complex road sections such as on-ramps. In this paper, we propose a microscopic model for on-ramps derived from a macroscopic network flow model calibrated to real traffic data. The microscopic flow-based model requires additional assumptions regarding the acceleration and the merging behavior on the on-ramp to maintain consistency with the mean speeds, traffic flow and density predicted by the macroscopic model. To evaluate the model's performance, we conduct traffic simulations assessing speeds, accelerations, lane change positions, and risky behavior. Our results show that, although the proposed model may not fully capture all traffic phenomena of on-ramps accurately, it performs better than the Intelligent Driver Model (IDM) in most evaluated aspects. While the IDM is almost completely free of conflicts, the proposed model evokes a realistic amount and severity of conflicts and can therefore be used for safety analysis.
Nonlinear extensions to the active subspaces method have brought remarkable results for dimension reduction in the parameter space and response surface design. We further develop a kernel-based nonlinear method. In particular we introduce it in a broader mathematical framework that contemplates also the reduction in parameter space of multivariate objective functions. The implementation is thoroughly discussed and tested on more challenging benchmarks than the ones already present in the literature, for which dimension reduction with active subspaces produces already good results. Finally, we show a whole pipeline for the design of response surfaces with the new methodology in the context of a parametric CFD application solved with the Discontinuous Galerkin method.
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.